Results 31 to 40 of about 2,069,772 (318)

Crystal structure of 1-(2,4-dihydroxy-6-methylphenyl)ethanone

open access: yesActa Crystallographica Section E: Crystallographic Communications, 2015
The title compound, C9H10O3, is a bioactive secondary metabolite, isolated from the endophytic fungus Nodulisporium sp. The compound exhibits an intramolecular O—H...O hydrogen bond between the phenolic H atom and the carbonyl O atom of the adjacent ...
Samran Prabpai, Palangpon Kongsaeree
doaj   +1 more source

Plasmodium falciparum gametogenesis essential protein 1 (GEP1) is a transmission‐blocking target

open access: yesFEBS Letters, EarlyView.
This study shows Plasmodium falciparum GEP1 is vital for activating sexual stages of malarial parasites even independently of a mosquito factor. Knockout parasites completely fail gamete formation even when a phosphodiesterase inhibitor is added. Two single‐nucleotide polymorphisms (V241L and S263P) are found in 12%–20% of field samples.
Frederik Huppertz   +5 more
wiley   +1 more source

Biophysical analysis of angiotensin II and amyloid‐β cross‐interaction in aggregation and membrane disruption

open access: yesFEBS Letters, EarlyView.
Angiotensin II (AngII), a neuropeptide, interacts with amyloid‐β (Aβ), a key player in Alzheimer's disease. This study reveals that AngII reduces Aβ aggregation and membrane disruption in vitro. Biophysical assays and molecular modeling suggest AngII binds disordered Aβ forms, potentially modulating early amyloidogenic events and contributing to ...
Mohsen Habibnia   +5 more
wiley   +1 more source

Molecular basis for multidrug efflux by an anaerobic-associated RND transporter

open access: yesNature Communications
Bacteria can resist antibiotics and toxic substances within demanding ecological settings, such as low oxygen, extreme acid, and during nutrient starvation. MdtEF, a proton motive force-driven efflux pump from the resistance-nodulation-cell division (RND)
Ryan Lawrence   +15 more
doaj   +1 more source

blkn, a novel Medicago truncatula mutant achieving black nodule phenotype

open access: yesHighlights in BioScience, 2020
blkn is a Medicago truncatula mutant that is achieving null function-black nodule phenotype. blkn is a Tnt1-retrotransposon mutant, Tnt1 is Nicotiana tabacum retro-transposon which is replicated via RNA copy and integrated in plant genome. Interestingly,
Asmaa Hassan   +3 more
doaj   +1 more source

4‐nitrobenzoate inhibits 4‐hydroxybenzoate polyprenyltransferase in malaria parasites and enhances atovaquone efficacy

open access: yesFEBS Letters, EarlyView.
Atovaquone is an antimalarial requiring potentiation for sufficient efficacy. We pursued strategies to enhance its activity, showing that 4‐nitrobenzoate inhibits 4‐hydroxybenzoate polyprenyltransferase, decreasing ubiquinone biosynthesis. Since atovaquone competes with ubiquinol in mitochondria, 4‐nitrobenzoate facilitates its action, potentiating ...
Ignasi Bofill Verdaguer   +7 more
wiley   +1 more source

Molecular insights into Spindlin1-HBx interplay and its impact on HBV transcription from cccDNA minichromosome

open access: yesNature Communications, 2023
Molecular interplay between host epigenetic factors and viral proteins constitutes an intriguing mechanism for sustaining hepatitis B virus (HBV) life cycle and its chronic infection.
Wei Liu   +12 more
doaj   +1 more source

Linked dimers of the AAA+ ATPase Msp1 reveal energetic demands and mechanistic plasticity for substrate extraction from lipid bilayers

open access: yesFEBS Letters, EarlyView.
Cells must clear mislocalized or faulty proteins from membranes to survive. The AAA+ ATPase Msp1 performs this task, but dissecting how its six subunits work together is challenging. We engineered linked dimers with varied numbers of functional subunits to reveal how Msp1 subunits cooperate and use energy to extract proteins from the lipid bilayer ...
Deepika Gaur   +5 more
wiley   +1 more source

Reciprocal control of viral infection and phosphoinositide dynamics

open access: yesFEBS Letters, EarlyView.
Phosphoinositides, although scarce, regulate key cellular processes, including membrane dynamics and signaling. Viruses exploit these lipids to support their entry, replication, assembly, and egress. The central role of phosphoinositides in infection highlights phosphoinositide metabolism as a promising antiviral target.
Marie Déborah Bancilhon, Bruno Mesmin
wiley   +1 more source

Home - About - Disclaimer - Privacy