Results 141 to 150 of about 151,397 (309)

A Novel 10‐Protein Score for Liver Fat Content Predicts Cardiovascular‐Kidney‐Metabolic Disease Risk

open access: yesAdvanced Science, EarlyView.
A novel 10‐protein plasma score precisely quantifies liver fat, outperforming the fatty liver index. It robustly predicts the risk of numerous cardiovascular‐kidney‐metabolic diseases and integrates with genetic data for precision prevention, offering a practical alternative to magnetic resonance imaging (MRI). Abstract Liver fat content (LFC) is a key
Xiaoqin Gan   +12 more
wiley   +1 more source

OTUD6A in Airway Epithelial Cells Exacerbates Allergic Asthma by Promoting Airway Inflammation and Airway Remodeling Through Deubiquitination of hResistin/mRELMα

open access: yesAdvanced Science, EarlyView.
This study elucidates a novel mechanistic role of the deubiquitinase OTUD6A in asthma pathogenesis, uncovering its regulatory function in airway inflammation and airway remodeling through the stabilization of hResistin/mRELMα. This study offers a novel regulatory axis (OTUD6A‐hResistin/mRELMα) in asthma pathogenesis and OTUD6A inhibition as a potential
Weiting Pan   +10 more
wiley   +1 more source

SETDB2 Mitigates Podocyte Dysfunction in Diabetic Kidney Disease Through Epigenetic Silencing of SMAD3

open access: yesAdvanced Science, EarlyView.
SETDB2 epigenetically represses Smad3 transcription by increasing H3K9me3 enrichment at its promoter, thereby mitigating podocyte dysfunction in DKD. The transcription factor TCF21 binds directly to the Setdb2 promoter and enhances its expression in podocytes. Abstract Podocyte dysfunction represents both an early pathological hallmark and a key driver
Lanfang Li   +14 more
wiley   +1 more source

Epidermal Cell Dynamics Regulates Rice Lamina Joint Morphogenesis and Leaf Angle Formation through OsZHD1 and OsZHD2 Regulation

open access: yesAdvanced Science, EarlyView.
The lamina joint determines leaf angle and plant architecture. Xu et al. establish a live‐imaging system for the rice lamina joint and reveal that asymmetric epidermal cell elongation and division between the lateral and medial edges drive leaf angle formation.
Yiru Xu   +9 more
wiley   +1 more source

Cellular Identity Crisis: RD3 Loss Fuels Plasticity and Immune Silence in Progressive Neuroblastoma

open access: yesAdvanced Science, EarlyView.
Researchers discovered that therapy‐induced loss of RD3 protein in neuroblastoma triggers a dangerous shift: cancer cells become more stem‐like, invasive, and resistant to treatment while evading immune detection. RD3 loss suppresses antigen presentation and boosts immune checkpoints, creating an immune‐silent environment.
Poorvi Subramanian   +7 more
wiley   +1 more source

miR‐135a‐5p Is a Promising Target to Prevent the Glomerulosclerosis Associated with Podocyte Developmental Toxicity in Offspring Induced by Prenatal Dexamethasone Exposure

open access: yesAdvanced Science, EarlyView.
Prenatal dexamethasone exposure (PDE) programs persistent podocyte developmental injury and adult glomerulosclerosis. Mechanistically, glucocorticoid receptor (GR) binds the miR‐135a‐5p promoter and recruits the histone acetyltransferase p300, increasing promoter histone acetylation and sustaining miR‐135a‐5p expression. Elevated miR‐135a‐5p suppresses
Xiaoqi Zhao   +8 more
wiley   +1 more source

Overcoming reduced glucocorticoid sensitivity in airway disease:molecular mechanisms and therapeutic approaches [PDF]

open access: yes, 2010
Abraham   +150 more
core   +1 more source

Cell‐Free DNA‐Based Theranostics for Inflammatory Disorders

open access: yesAdvanced Science, EarlyView.
Summary on the dual potential of cfDNA as biomarkers and therapeutic targets for inflammatory disorders. Figure was created with BioRender.com. ABSTRACT Inflammatory disorders are characterized by immune‐mediated inflammatory cascades that can affect multiple organs.
Jiatong Li   +7 more
wiley   +1 more source

Glucocorticoid Receptors

open access: yesJournal of Biological Chemistry, 1974
Marc E. Lippman   +3 more
openaire   +1 more source

Engineering Immune Cell to Counteract Aging and Aging‐Associated Diseases

open access: yesAdvanced Science, EarlyView.
This review highlights a paradigm shift in which advanced immune cell therapies, initially developed for cancer, are now being harnessed to combat aging. By engineering immune cells to selectively clear senescent cells and remodel pro‐inflammatory tissue microenvironments, these strategies offer a novel and powerful approach to delay age‐related ...
Jianhua Guo   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy