Results 101 to 110 of about 296,111 (290)

Interactions between the neuromodulatory systems and the amygdala: exploratory survey using the Allen Mouse Brain Atlas. [PDF]

open access: yes, 2013
Neuromodulatory systems originate in nuclei localized in the subcortical region of the brain and control fundamental behaviors by interacting with many areas of the central nervous system.
Krichmar, Jeffrey L, Zaldivar, Andrew
core   +1 more source

Engineered Microfluidic Organoid Systems: New Paradigms for Menopause Mechanism Research and Personalized Medicine

open access: yesAdvanced Materials Technologies, EarlyView.
This review explores the integration of microfluidic technology with organoid systems as an innovative platform for studying menopausea complex multi‐organ condition. By enabling precise simulation of inter‐organ communication and hormone responses, microfluidic organoids offer a physiologically relevant model for investigating menopausal syndrome and ...
Qianyi Zhang   +4 more
wiley   +1 more source

Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue. [PDF]

open access: yes, 2012
Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photoregulation of GABA(A) receptors (GABA(A)Rs) by a derivative of propofol (2,6-diisopropylphenol), a ...
Bruzik, Karol S   +8 more
core   +2 more sources

Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics

open access: yesAdvanced Robotics Research, EarlyView.
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang   +5 more
wiley   +1 more source

A toolkit for orthogonal and in vivo optical manipulationof ionotropic glutamate receptors

open access: yesFrontiers in Molecular Neuroscience, 2016
The ability to optically manipulate specific neuronal signaling proteins with genetic precision paves the way for the dissection of their roles in brain function, behavior, and disease.
Joshua Todd Levitz   +3 more
doaj   +1 more source

Current Perspective on the Location and Function of Gamma- Aminobutyric Acid (GABA) and its Metabolic Partners in the Kidney. [PDF]

open access: yes, 2014
Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter located in the mammalian central nervous system, which binds to GABAA and GABAB receptors to mediate its neurological effects.
Dunn, Kadeshia   +3 more
core   +1 more source

Nanomaterial‐Based Muscle Cell/Neural Tissue Biohybrid Robots: From Actuation to Biomedical Applications

open access: yesAdvanced Robotics Research, EarlyView.
Muscle cell‐based biohybrid robot using nanomaterials for function enhancement and neural function for biomedical applications. Biohybrid robotics, an emerging field combining biological tissues with artificial systems, has made significant progress in developing various biohybrid constructs, including muscle‐cell‐driven biorobots and microbots.
Minkyu Shin   +4 more
wiley   +1 more source

Neurotransmitter Receptor Bases of the Long-Rage Interactions of Cat Striate Cortical Neurons Revealed by In-Vivo Intracellular Injection

open access: yesi-Perception, 2011
In the primary visual cortex, activity of neurons evoked by stimuli within the classical receptive field (CRF) can be modulated by stimuli in the extra-receptive field (ERF).
Xue-Mei Song, Yu Yin, Chao-Yi Li
doaj   +1 more source

Circular RNA PTPN4 Contributes to Blood‐Brain Barrier Disruption during Early Epileptogenesis

open access: yesAdvanced Science, EarlyView.
Epileptic condition induces CircPTPN4 upregulation, which promotes ECE‐1 expression through competitive sequestration of miR‐145a‐5p. The elevated ECE‐1 catalyzes the ET‐1 production, leading to p38/MAPK pathway activation and subsequent downregulation of tight junction protein expression. This cascade results in increased BBB permeability and enhanced
Jiurong Yang   +16 more
wiley   +1 more source

Indole‐3‐Propionic Acid Improves Alveolar Development Impairment via Targeting VAMP8‐mediated SNAREs Complex Formation in Bronchopulmonary Dysplasia

open access: yesAdvanced Science, EarlyView.
This study aims to evaluate the impact of the tryptophan‐derived metabolite indole‐3‐propionic acid (IPA) on lung development and autophagic flux. IPA alleviates hyperoxia‐induced alveolar arrest by promoting autophagosome‐lysosome fusion via inhibition of VAMP8 phosphorylation, which is suggestive of a promising therapeutic target of BPD.
Beibei Wang   +14 more
wiley   +1 more source

Home - About - Disclaimer - Privacy