Results 151 to 160 of about 99,708 (290)

Multimodal Locomotion in Insect‐Inspired Microrobots: A Review of Strategies for Aerial, Surface, Aquatic, and Interfacial Motion

open access: yesAdvanced Robotics Research, EarlyView.
This review identifies key design considerations for insect‐inspired microrobots capable of multimodal locomotion. To draw inspiration, biological and robotic strategies for moving in air, on water surfaces, and underwater are examined, along with approaches for crossing the air–water interface.
Mija Jovchevska   +2 more
wiley   +1 more source

Nanomaterial‐Based Muscle Cell/Neural Tissue Biohybrid Robots: From Actuation to Biomedical Applications

open access: yesAdvanced Robotics Research, EarlyView.
Muscle cell‐based biohybrid robot using nanomaterials for function enhancement and neural function for biomedical applications. Biohybrid robotics, an emerging field combining biological tissues with artificial systems, has made significant progress in developing various biohybrid constructs, including muscle‐cell‐driven biorobots and microbots.
Minkyu Shin   +4 more
wiley   +1 more source

Harnessing Carbenoid Reactivity From Imidazoles and Oxiranes

open access: yesAdvanced Synthesis &Catalysis, EarlyView.
The combination of azole compounds and oxiranes exhibits carbenoid reactivity at elevated temperatures, as demonstrated by the successful benzoin condensation of aromatic aldehydes. Using this catalytic system to polymerize bifunctional aldehyde/oxirane monomers yields thermosets with glass transition temperatures above 100°C.
Matthias R. Steiner   +4 more
wiley   +1 more source

ROS Activated NETosis of Bone Marrow CD55+ Intermediate Mature Neutrophils Through HIF1α‐PADI4 Pathway to Initiate Bone Aging

open access: yesAdvanced Science, EarlyView.
In this study, we find CD55+ neutrophils show activated NETosis within bone marrow, induce BMSC senescence and osteogenesis inhibition, finally leading to bone aging initiation. Mechanistically, ROS synergizes with the CD55‐driven HIF1α‐PADI4 pathway to promote NETosis.
Yutong Guo   +6 more
wiley   +1 more source

Biocatalytic Nanoregulators Restore Joint Redox‐Immune Homeostasis in Rheumatoid Arthritis

open access: yesAdvanced Science, EarlyView.
Mesenchymal stem cell‐derived extracellular vesicles (EVs) coat ruthenium‐loaded metal‐organic frameworks (Ru@ZrMOF), creating a targeted therapeutic (Ru@ZrMOF/EVs). This platform scavenges ROS, generates oxygen, and polarizes macrophages from M1 to M2, alleviating inflammation, inhibiting pannus, promoting cartilage repair, and downregulating HIF‐1α ...
Xingheng Wang   +7 more
wiley   +1 more source

Vm–MSI: a Vancomycin–Antimicrobial Peptide Conjugate Combating Resistant Bacteria and Broadening the Antimicrobial Spectrum

open access: yesAdvanced Science, EarlyView.
A series of vancomycin‐antimicrobial peptide conjugates is synthesized and evaluated to identify the optimal combination. Vm‐MSI, selected from multiple candidates, exhibited potent activity against vancomycin‐resistant and Gram‐negative bacteria by disrupting membranes and inducing oxidative stress, thereby expanding vancomycin's antibacterial ...
Shuangyu Li   +7 more
wiley   +1 more source

Mitochondrial Calcium Uniporter Drives Chemoresistance in Pancreatic Cancer via Glutathione‐Mediated Stemness Maintenance

open access: yesAdvanced Science, EarlyView.
PDAC has a poor prognosis due to chemoresistance. We revealed that MCU upregulation is associated with chemoresistance and stemness in PDAC. MCU‐mediated Ca2+ influx induced ER stress, activating the PERK‐ATF4/NRF2 axis to enhance PSAT1/SLC711 expression and glutathione synthesis, reducing ROS and maintaining stemness.
Zekun Li   +17 more
wiley   +1 more source

Platelet Rubicon Bidirectional Regulation of GPVI and Integrin αIIbβ3 Signaling Mitigates Stroke Infarction Without Compromising Hemostasis

open access: yesAdvanced Science, EarlyView.
This study identifies Rubicon as a key platelet protein that bidirectionally regulates GPVI and integrin αIIbβ3 signaling. Platelet Rubicon protects against cerebral ischemia‐reperfusion injury by limiting infarction without increasing hemorrhage.
Xiaoyan Chen   +11 more
wiley   +1 more source

Gallium‐Doped MXene Nanozymes Protect Liver Through Multi‐Death Pathway Blockade and Hepatocyte Regeneration

open access: yesAdvanced Science, EarlyView.
This study develops gallium‐doped V2C MXene nanozymes (Ga‐V2C) to treat acetaminophen‐induced liver injury through multi‐death pathway blockade and hepatocyte regeneration. Unlike conventional single‐target therapies like N‐acetylcysteine, Ga‐V2C nanozymes enable oxidative stress suppression, apoptosis, and ferroptosis inhibition, and enhanced ...
Xiaopeng Cai   +13 more
wiley   +1 more source

Targeting NRP1 in Endothelial Cells Facilitates the Normalization of Scar Vessels and Prevents Fibrotic Scarring

open access: yesAdvanced Science, EarlyView.
Scars exhibit vascular abnormal alterations, including upregulated NRP1 expression in endothelial cells, increased vascular density and branching, compromised vessel wall integrity, and incomplete pericyte coverage. Therapeutic targeting of NRP1 through hydrogel spray delivery offers a promising approach to normalize aberrant vasculature and prevent ...
Yu Wang   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy