Results 271 to 280 of about 738,282 (345)

Single‐Nucleus Multi‐Omics Reveals Hypoxia‐Driven Angiogenic Programs and Their Epigenetic Control in Sinonasal Squamous Cell Carcinoma

open access: yesAdvanced Science, EarlyView.
Single‐nucleus multi‐omics profiling of sinonasal squamous cell carcinoma unveils a hypoxia‐driven angiogenic axis. A specific hypoxic tumor subpopulation orchestrates endothelial tip cell differentiation via epigenetically regulated ADM and VEGFA secretion.
Chaelin You   +12 more
wiley   +1 more source

Comparative Risk of Serious Infections Associated With Treatment of Inflammatory Bowel Disease. [PDF]

open access: yesInflamm Bowel Dis
Khan N   +5 more
europepmc   +1 more source

Precise Regulation of Membrane Proteins: From Physical Technology to Biomolecular Strategy

open access: yesAdvanced Science, EarlyView.
This review summarizes the emerging strategies for the precise regulation of membrane proteins using physical stimuli and biomolecule‐based tools. These methods provide new insights into cell regulation and offer promising directions for future disease treatment.
Xiu Zhao   +6 more
wiley   +1 more source

Microenvironment Self‐Adaptive Nanoarmor to Address Adhesion‐ and Colonization‐Related Obstacles in Impaired Intestine Promote Bacteriotherapy Against Parkinson's Disease

open access: yesAdvanced Science, EarlyView.
A microenvironment self‐adaptive nanoarmor is developed to effectively address the adhesion‐ and colonization‐related challenges posed by multiple physiological and pathological characteristics in the intestine. L. plantarum@MPN@CS showed significant therapeutic potential in treating Parkinson's disease (PD), a model for extraintestinal disorders, as ...
Limeng Zhu   +6 more
wiley   +1 more source

Molecular mechanisms of acute inflammation: systemic responses and kidney-specific pathophysiology. [PDF]

open access: yesFunction (Oxf)
Chelangarimiyandoab F   +4 more
europepmc   +1 more source

A Mussel‐Inspired Bioadhesive Patch to Selectively Kill Glioblastoma Cells

open access: yesAdvanced Science, EarlyView.
An innovative mussel‐inspired bioadhesive patch has been developed for post‐surgical glioblastoma treatment. The patch, which adheres strongly in biological environments, releases a localized treatment. This treatment, acting via reactive oxygen species, shows specific toxicity to glioblastoma cells.
Jose Bolaños‐Cardet   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy