Results 211 to 220 of about 358,538 (335)

Long‐Term Effects of Xenotransplantation of Human Enteric Glia in an Immunocompetent Rat Model of Acute Brain Injury

open access: yesAdvanced Science, EarlyView.
Acute brain injuries are characterized by extensive tissue damage, resulting in debilitating deficits in patients. Despite considerable progress, cell‐based approaches have yet to identify an ideal candidate. This long‐term study explores the use of an untested cell source – human enteric glia – and a non‐invasive administration route – intranasal ...
Nina Colitti   +11 more
wiley   +1 more source

A distinct lineage pathway drives parvalbumin chandelier cell fate in human interneuron reprogramming. [PDF]

open access: yesSci Adv
Stamouli CA   +11 more
europepmc   +1 more source

Sabotaged Integral HSC Heterogeneity Underlies Essential Thrombocythemia Development

open access: yesAdvanced Science, EarlyView.
Single‐cell RNA sequencing (scRNA‐seq) maps how distinct driver mutations remodel hematopoietic stem cell (HSC) programs across essential thrombocythemia (ET). Comparative analysis uncovers both shared and subtype‐specific molecular signatures, identifies a triple‐negative (TN)‐associated HSC population enriched with malignant traits, and reveals the ...
Jingyuan Tong   +21 more
wiley   +1 more source

Interferon‐Driven Biomarkers and Synergistic Therapy for PRMT5 Inhibition in Triple‐Negative Breast Cancer

open access: yesAdvanced Science, EarlyView.
Triple‐negative breast cancer exhibits variable sensitivity to PRMT5 inhibition. Basal interferon signaling is identified as a key biomarker of response. PARP inhibition with olaparib induces IFN signaling, sensitizing resistant TNBC cells to PRMT5 inhibitors.
Ziwen Zhang   +9 more
wiley   +1 more source

Chemical reprogramming of fibroblasts into retinal pigment epithelium cells for vision restoration. [PDF]

open access: yesNat Commun
Li S   +17 more
europepmc   +1 more source

Inhibition of Hypersialylation in Human Intervertebral Disc Degeneration Modulates Inflammation and Metabolism

open access: yesAdvanced Science, EarlyView.
Glycosylation, specifically hypersialylation, is identified as a critical factor in human intervertebral disc (IVD) degeneration—a major cause of low back pain. This study demonstrates that inhibiting sialylation reduces inflammation and oxidative stress in IVD tissues, suggesting new therapeutic possibilities.
Kieran Joyce   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy