Results 231 to 240 of about 2,171,089 (338)

Impact of Nanoparticle Stiffness on Endosomal Escape and Signaling Pathways in Cytosolic Delivery

open access: yesAdvanced Healthcare Materials, EarlyView.
Nanoparticle (NP) stiffness affects cellular uptake, but its impact on intracellular distribution remains unclear. This study synthesizes silica nanocapsules with varying stiffness, inspired by viral mechanisms, and applies assays to measure cellular uptake and escape efficiency.
Yali Zhang   +6 more
wiley   +1 more source

One-Step Multiplex RT-PCR Method for Detection of Melon Viruses. [PDF]

open access: yesMicroorganisms
Han S   +5 more
europepmc   +1 more source

DEVELOPMENT OF URINE RT-QUANTITATIVE-PCR FOR THE MOLECULAR DIAGNOSIS OF ACUTE REJECTION OF HUMAN RENAL ALLOGRAFTS

open access: bronze, 1999
B Li   +5 more
openalex   +1 more source

3D‐Printed Multidimensional Bionic Mg‐MC/PLGA Composite for Tailored Repair of Segmental Long Bone Defects

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops 3D‐printed Mg‐MC/PLGA scaffolds with varying Mg concentrations (0–20%). The 5% Mg scaffold shows optimal cytocompatibility, osteogenic activity in vitro, and significantly enhances bone regeneration in rabbits, improving bone volume and mechanical strength.
Shihang Liu   +9 more
wiley   +1 more source

Suppressing t(4;11) Acute Leukemia by Lipopolymer Nanoparticle Delivery of siRNA Targeting KMT2A::AFF1 with Enhanced Extrahepatic Delivery

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces a new lipopolymer nanoparticle (LPNP) system that efficiently delivers siRNA to leukemia cells. The LPNPs silence the leukemia fusion gene KMT2A::AFF1, induce apoptosis, and decrease leukemia burden in mice. These results demonstrate the potential of LPNPs as a targeted siRNA therapy for acute lymphoblastic leukemia.
Mohammad Nasrullah   +9 more
wiley   +1 more source

Development of a triplex crystal digital RT-PCR for the detection of PHEV, PRV, and CSFV. [PDF]

open access: yesFront Vet Sci
Shi K   +7 more
europepmc   +1 more source

Porous Decellularized Nerve Grafts Facilitate Recellularization and Nerve Regeneration in a Rat Model of Critical Long‐Gap Peripheral Nerve Injury

open access: yesAdvanced Healthcare Materials, EarlyView.
A decellularized nerve graft (DNG) is modified to generate a porous DNG (PDNG). The PDNG is used to repair a 30‐mm peripheral nerve injury (PNI) defect, and is compared with isograft, serving as the standard, and DNG, a widely used alternative. The result shows that PDNG facilitated nerve regeneration in long‐gap PNI, evidenced by better‐aligned axonal
Olawale Alimi Alimi   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy