Results 91 to 100 of about 4,751,605 (346)
Three‐dimensional (3D) biological systems have become key tools in lymphoma research, offering reliable in vitro and ex vivo platforms to explore pathogenesis and support precision medicine. This review highlights current 3D non‐Hodgkin lymphoma models, detailing their features, advantages, and limitations, and provides a broad perspective on future ...
Carla Faria +3 more
wiley +1 more source
Bacterial epidemiology and biology - lessons from genome sequencing [PDF]
Next-generation sequencing has ushered in a new era of microbial genomics, enabling the detailed historical and geographical tracing of bacteria. This is helping to shape our understanding of bacterial evolution.
Brendan W. Wren, Julian Parkhill
openaire +4 more sources
From omics to AI—mapping the pathogenic pathways in type 2 diabetes
Integrating multi‐omics data with AI‐based modelling (unsupervised and supervised machine learning) identify optimal patient clusters, informing AI‐driven accurate risk stratification. Digital twins simulate individual trajectories in real time, guiding precision medicine by matching patients to targeted therapies.
Siobhán O'Sullivan +2 more
wiley +1 more source
With the explosive growth of biological sequences generated in the post-genomic era, one of the most challenging problems in bioinformatics and computational biology is to computationally characterize sequences, structures and functions in an efficient ...
Zhen Chen +14 more
semanticscholar +1 more source
ERBIN limits epithelial cell plasticity via suppression of TGF‐β signaling
In breast and lung cancer patients, low ERBIN expression correlates with poor clinical outcomes. Here, we show that ERBIN inhibits TGF‐β‐induced epithelial‐to‐mesenchymal transition in NMuMG breast and A549 lung adenocarcinoma cell lines. ERBIN suppresses TGF‐β/SMAD signaling and reduces TGF‐β‐induced ERK phosphorylation.
Chao Li +3 more
wiley +1 more source
Protocol for analysis of single-cell sequencing data by Seqtometry
Summary: Seqtometry (sequencing-to-measurement) is an analytical platform for single-cell analysis based on direct profiling of gene expression and accessibility achieved by advanced scoring with gene signatures.
Robert Kousnetsov, Daniel Hawiger
doaj +1 more source
Knowing how proteases recognise preferred substrates facilitates matching proteases to applications. The S1′ pocket of protease EA1 directs cleavage to the N‐terminal side of hydrophobic residues, particularly leucine. The S1′ pocket of thermolysin differs from EA's at only one position (leucine in place of phenylalanine), which decreases cleavage ...
Grant R. Broomfield +3 more
wiley +1 more source
Protocol for constructing glycan biosynthetic networks using glycowork
Summary: Glycans, present across all domains of life, comprise a wide range of monosaccharides assembled into complex, branching structures. Here, we present an in silico protocol to construct biosynthetic networks from a list of observed glycans using ...
Jon Lundstrøm +2 more
doaj +1 more source
Exploring lipid diversity and minimalism to define membrane requirements for synthetic cells
Designing the lipid membrane of synthetic cells is a complex task, in which its various roles (among them solute transport, membrane protein support, and self‐replication) should all be integrated. In this review, we report the latest top‐down and bottom‐up advances and discuss compatibility and complexity issues of current engineering approaches ...
Sergiy Gan +2 more
wiley +1 more source
C‐mannosylation is a unique form of protein glycosylation. In this study, we demonstrated that ADAMTS1 is C‐mannosylated at Trp562 and Trp565 in human testicular germ cell tumor NEC8 cells. We found that C‐mannosylation of ADAMTS1 is essential for its secretion, processing, enzymatic activity, and ability to promote vasculogenic mimicry. These findings
Takato Kobayashi +5 more
wiley +1 more source

