Results 51 to 60 of about 34,560 (199)
Supervariate Gel Transforms into Various Biominerals in Salt Solutions
It is revealed that common calcium‐based biominerals can form from a stable, non‐toxic ‘supervariate’ gel. This tunable gel selectively yields calcite or hydroxyapatite in carbonate/phosphate solutions, while CaCl₂ facilitates the formation of dihydrate calcium pyrophosphate, which converts to hydroxyapatite upon drying. These findings provide insights
Xinxue Tang+12 more
wiley +1 more source
Transducer Materials Mediated Deep Brain Stimulation in Neurological Disorders
This review discusses advanced transducer materials for improving deep brain stimulation (DBS) in neurological disorders. These materials respond to light, ultrasound, or magnetic fields, enabling precise, less invasive neuromodulation. Their stimulus‐responsive properties enhance neural control and adaptive therapy, paving the way for next‐generation ...
Di Zhao+5 more
wiley +1 more source
A potent anionic citric acid‐based 3D‐printed scaffold is developed for the sustained and controlled release of orthobiologics to enhance orthopedic therapeutic efficacy. Comprehensive in vivo studies demonstrated effective bone fusion and high safety at a low dose of BMP‐2 delivered by the system, establishing it as a promising platform for safe ...
Se‐Hwan Lee+12 more
wiley +1 more source
Functional Hydrogel for Modulating Lipid Droplets and Neuroinflammation in Head Injury
After TBI, elevated cholesterol levels in activated microglia lead to the accumulation of cholesterol esters in lipid droplets, exacerbating neuroinflammation. A β‐cyclodextrin‐conjugated GelMA (βCD‐GelMA) hydrogel is developed to promotes cholesterol efflux and reduces LDL influx, thereby alleviating intracellular cholesterol and lipid droplet buildup.
Feixiang Chen+9 more
wiley +1 more source
Spinal cord injury (SCI) poses significant challenges for regeneration due to a series of secondary injury mechanisms. How to use biomaterial approach to target the failed regeneration after SCI remains a critical challenge. This review systematically evaluates current strategies to optimize biomaterial topographies for neurite outgrowth, axonal ...
Wei Xu+7 more
wiley +1 more source
Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth+2 more
wiley +1 more source
Understanding Functional Materials at School
This review outlines strategies for effectively teaching nanoscience in schools, focusing on challenges such as scale comprehension and curriculum integration. Emphasizing inquiry‐based learning and chemistry core concepts, it showcases hands‐on activities, digital tools, and interdisciplinary approaches.
Johannes Claußnitzer, Jürgen Paul
wiley +1 more source
Selenium Electrophilic Center Responsive to Biological Electron Donors for Efficient Chemotherapy
Designing drugs to intelligently respond to different ratio of biological electron donors/receptors in cancer cells and normal cells is a promising strategy to achieve highly effective and less toxic chemotherapy.
Xiaoyu Qin+8 more
doaj +1 more source
Exosomes can reduce tissue damage in temporomandibular joint osteoarthritis (TMJOA), but rapid clearance limits their efficacy. This study encapsulates exosomes in hyaluronic acid hydrogels for controlled release. In a rat model, hydrogel‐encapsulated exosomes outperform free exosomes in preserving bone integrity and reducing tissue destruction ...
Victor Diez‐Guardia+7 more
wiley +1 more source
3D‐Printed Scaffolds Promote Enhanced Spinal Organoid Formation for Use in Spinal Cord Injury
3D‐printed organoid scaffolds with microscale channels are developed to enhance spinal cord injury recovery by guiding region‐specific spinal neural progenitor cells. These scaffolds promote axonal growth, cell maturation, and neuronal network formation.
Guebum Han+8 more
wiley +1 more source