Results 131 to 140 of about 38,230 (233)

A Cold Stress‐Activated Endocrine Sentinel Chemical Hormone Promotes Insect Survival via Mitochondrial Adaptations Through the Adipokinetic Hormone Receptor

open access: yesAdvanced Science, EarlyView.
Seasonal cold adaptation is vital for insect survival, yet the molecular mechanisms linking diapause to mitochondrial resilience remain largely unresolved. We identify ascaroside C9 (asc‐C9) as a key endocrine signal that enhances diapause survival during cold stress by activating the AKHR–PGC1α–UCP4 axis, thereby driving cold‐induced lipolysis and ...
Jiao Zhou   +14 more
wiley   +1 more source

TBK1 Induces the Formation of Optineurin Filaments That Condensate with Polyubiquitin and LC3 for Cargo Sequestration

open access: yesAdvanced Science, EarlyView.
Phosphorylation of Optineurin by TBK1 induces the formation of filaments that condensate upon binding to linear polyubiquitin. Membrane‐anchored LC3 partitions into these condensates, suggesting that phase separation of filamentous Optineurin with ubiquitylated cargo promotes the sequestration of cargo and its subsequent alignment with LC3‐positive ...
Maria G. Herrera   +10 more
wiley   +1 more source

Targeting NRP1 in Endothelial Cells Facilitates the Normalization of Scar Vessels and Prevents Fibrotic Scarring

open access: yesAdvanced Science, EarlyView.
Scars exhibit vascular abnormal alterations, including upregulated NRP1 expression in endothelial cells, increased vascular density and branching, compromised vessel wall integrity, and incomplete pericyte coverage. Therapeutic targeting of NRP1 through hydrogel spray delivery offers a promising approach to normalize aberrant vasculature and prevent ...
Yu Wang   +11 more
wiley   +1 more source

Empowering future nurses: enhancing self-efficacy, satisfaction, and academic achievement through talent management educational intervention. [PDF]

open access: yesBMC Nurs
Alhowaymel FM   +7 more
europepmc   +1 more source

Long‐Term Active Rather than Passive Restoration Promotes Soil Organic Carbon Accumulation by Alleviating Microbial Nitrogen Limitation in an Extremely Degraded Alpine Grassland

open access: yesAdvanced Science, EarlyView.
Active restoration increases soil organic carbon stocks by reducing microbial nitrogen limitation. Nitrogen availability promotes particulate to mineral‐associated organic carbon conversion by reducing microbial carbon use efficiency. Passive restoration has no effect on soil organic carbon stocks.
Jinchao Gong   +15 more
wiley   +1 more source

Home - About - Disclaimer - Privacy