Results 211 to 220 of about 3,264,535 (355)

Biocompatible Ink Optimization Enables Functional Volumetric Bioprinting With Xolography

open access: yesAdvanced Materials, EarlyView.
Xolography's reliance on weak‐base co‐initiators introduces unique biochemical constraints. By dissecting the effects of extracellular pH, osmolality, and lysosomotropic stress, this study defines the biochemical design space that enables fully biocompatible, cell‐laden volumetric printing. Abstract Xolography is a novel linear volumetric manufacturing
Erik Brauer   +17 more
wiley   +1 more source

Neuroimmune Microenvironment Reprogramming via Immuno‐piezoelectric Transducers for Synergistic Stem Cell Therapy in Traumatic Brain Injury

open access: yesAdvanced Materials, EarlyView.
A novel immuno‐piezoelectric transducer is innovatively developed. This device promotes neural stem cell (NSC) differentiation and maturation via ultrasound‐induced electrical stimulation and it amplifies the therapeutic efficacy of NSC in traumatic brain injury (TBI) by modulating the immune microenvironment. This piezoelectric transducer with “immune‐
Linlin Liang   +12 more
wiley   +1 more source

Isolation and Characterization of porcine leukocyte elastase. [PDF]

open access: yes, 1985
Geiger, Reinhard   +2 more
core   +1 more source

One‐Step Coordinated Multi‐Kinetic 4D Printing of Human Vascularized Cardiac Tissues with Selective Fast‐Shrinking Capillaries

open access: yesAdvanced Materials, EarlyView.
This study presents a novel 4D bioprinting technique for fabricating cardiac tissues with complex microvasculature. Unlike traditional 3D printing, it enables capillary‐scale structure formation via selective post‐printing shrinkage. This approach overcomes resolution limits of printing cell‐laden hydrogels, allowing the creation of functional ...
Ester Sapir Baruch   +6 more
wiley   +1 more source

Spermatozoa Acrosin and Seminal Plasma Acosin Inhibitors [PDF]

open access: yes, 1978
Atienza-Samols, S. B.   +4 more
core  

Tailored Xenogeneic‐Free Polymer Surface Promotes Dynamic Migration of Intestinal Stem Cells

open access: yesAdvanced Materials, EarlyView.
This study introduces a PoLymer‐coated Ultra‐stable Surface (PLUS), a nitrogen plasma‐treated poly(ethyleneglycoldimethacrylate), as a stable xenogeneic‐free platform for intestinal stem cell culture. PLUS enhances cell attachment, supports actin‐driven migration, and retains functionality after 3 years of storage. Promoting cytoskeletal reorganization,
Seonghyeon Park   +13 more
wiley   +1 more source

Double-headed nature of a trypsin inhibitor from rice bran.

open access: bronze, 1980
Zensuke Maki   +3 more
openalex   +2 more sources

Home - About - Disclaimer - Privacy