Results 271 to 280 of about 1,214,456 (357)

Shedding Light on the Cellular Uptake Mechanisms of Bioactive Glass Nanoparticles as Controlled Intracellular Delivery Platforms: A Review of the Recent Literature

open access: yesAdvanced Healthcare Materials, EarlyView.
This review summarizes the main uptake pathways of bioactive glass nanoparticles (BGNs) and their intracellular localization, highlighting that BGNs are mainly internalized and entrapped within endosomes/lysosomes. Strategies for controlled intracellular ion release, with implications for targeted modulation of cell behavior, are discussed. The need to
Andrada‐Ioana Damian‐Buda   +1 more
wiley   +1 more source

Electrochemical Biosensor for Rapid Detection of Acute Rejection in Kidney Transplants

open access: yesAdvanced Healthcare Materials, EarlyView.
A low‐cost, rapid electrochemical immunosensor coated with a novel antifouling nanocomposite enables single‐step, dual‐biomarker profiling directly from unprocessed urine. Application in a clinical study shows accurate discrimination of acute rejection in kidney transplants from other acute kidney injuries via machine learning.
Rohit Gupta   +9 more
wiley   +1 more source

Absolute quantification of viral proteins from pseudotyped VSV-GP using UPLC-MRM. [PDF]

open access: yesMicrobiol Spectr
Basu R   +8 more
europepmc   +1 more source

Body Biofluids for Minimally‐Invasive Diagnostics: Insights, Challenges, Emerging Technologies, and Clinical Potential

open access: yesAdvanced Healthcare Materials, EarlyView.
Recent advances in diagnostics have accelerated the development of miniaturized wearable technologies for the continuous monitoring of diseases. This paradigm is shifting healthcare away from invasive, centralized blood tests toward decentralized monitoring, using alternative body biofluids.
Lanka Tata Rao   +2 more
wiley   +1 more source

3D Printing of Bacteriophage‐Loaded Hydrogels: Development of a Local and Long‐Lasting Delivery System

open access: yesAdvanced Healthcare Materials, EarlyView.
This research investigates the feasibility of 3D‐printing of a bacteriophage‐containing hydrogel made of alginate and methylcellulose. The printed hydrogels steadily release active bacteriophages for up to 35 days which is beneficial to treat implant‐associated infections.
Corina Vater   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy