Results 111 to 120 of about 8,006 (161)

一种基于BP神经网络的快速谐波分析算法研究

open access: yesDianci bileiqi, 2014
谐波的检测分析对于电力系统谐波治理非常重要,但常用的FFT检测方法存在频谱泄漏及栅栏现象等缺陷,加窗插值算法的使用一定程度上弥补了这些不足却又增大了计算量和存储容量要求;人工神经网络具有快速处理数字信号能力,本文以谐波离散傅里叶变换后的三角函数和傅里叶系数分别作为BP网络的隐层神经元和权值可获得了一种训练速度更快的神经网络;通过该神经网络算法和效果相对较好的几种FFT插值算法的仿真实例比较,验证了该算法能够更快更精确地对电力系统谐波进行分析,对谐波治理具有较大意义。
李德超
doaj  

[The current applicating state of neural network-based electroencephalogram diagnosis of Alzheimer's disease]. [PDF]

open access: yesSheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2022
Liu Y   +7 more
europepmc   +1 more source

[Diagnosis of nasopharyngeal carcinoma with convolutional neural network on narrowband imaging]. [PDF]

open access: yesLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2023
Weng J   +9 more
europepmc   +1 more source

[Research on mild cognitive impairment diagnosis based on Bayesian optimized long-short-term neural network model]. [PDF]

open access: yesSheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2023
Li X   +6 more
europepmc   +1 more source

模糊遗传人工神经网络算法提取乳腺微钙化点的效果

open access: yesZhongshan Daxue xuebao. Yixue kexue ban, 2008
【目的】微钙化点是早期乳腺癌的重要征象之一,本研究联合运用遗传算法、模糊数学和人工神经网络,建议一种乳腺微钙化点提取的新方法,为乳腺病变的自动识别提供前期处理,为早期乳腺癌的临床诊断提供帮助。【方法】首先利用随机方法产生大量的样本,然后,利用模糊遗传算法对产生的随机样本进行分类,将分类后的样本输入人工神经网络进行训练,将310幅乳腺图像的感兴趣区域输入训练后的人工神经网络分类器进行分类。【结果】与微钙化点提取方面的同类文献相比较,结果表明该算法在相同误检率下得到较高的阳性检出率。【结论 ...
doaj  

Home - About - Disclaimer - Privacy