Results 131 to 140 of about 345,011 (278)

Antibody‐Empowered Nanomedicine for Precise Biomedical Applications

open access: yesAdvanced Science, EarlyView.
This review explores strategies for functionalizing nanoparticles with antibodies to construct antibody‐empowered nanomedicine. It discusses the classification of these nanomedicines based on antibody structure, with a specific focus on their biomedical applications in diagnostics, bioimaging, and therapeutics for various diseases.
Chen Chen   +7 more
wiley   +1 more source

Engineered CAR‐NKT Extracellular Vesicles Suppress Tumor Progression and Enhance Antitumor Immunity

open access: yesAdvanced Science, EarlyView.
TM4SF1‐nanobody engineered CAR‐natural killer T–derived extracellular vesicles (CARTM4SF1‐EVs) provide a cell‐free alternative to CAR‐NKT therapy, achieving potent, targeted antitumor activity with reduced toxicity. CARTM4SF1‐EVs induce immunogenic cell death, remodel the tumor microenvironment, and enhance CD8⁺ T‐cell antitumor immunity.
Xiaopei Hao   +14 more
wiley   +1 more source

Combining Electrochemical Reduction with Biosynthesis for Directed Conversion of CO2 into a Library of C3 Chemicals

open access: yesAdvanced Science, EarlyView.
In the H‐type electrolytic cell, carbon dioxide is reduced to acetic acid via electro‐microbial catalysis. The simply processed acetic acid is further converted through biological fermentation into high‐value‐added products, including acrylic acid, L‐lactic acid, and β‐alanine.
Kaixing Xiao   +8 more
wiley   +1 more source

Reconfigurable Combinational Logic Operations Using Triple‐Gated Feedback Field‐Effect Transistors for Logic‐In‐Memory Computing

open access: yesAdvanced Electronic Materials, EarlyView.
In this study, we demonstrated that four distinct combinational logic operations can be reconfigured and executed within a single circuit structure, where each reconfigurable logic‐in‐memory cell dynamically adapts its function. The reconfigurable logic‐in‐memory cell, composed of triple‐gated feedback field‐effect transistors, performs NOT, AND, OR ...
Dongki Kim   +4 more
wiley   +1 more source

RRAM Variability Harvesting for CIM‐Integrated TRNG

open access: yesAdvanced Electronic Materials, EarlyView.
This work demonstrates a compute‐in‐memory‐compatible true random number generator that harvests intrinsic cycle‐to‐cycle variability from a 1T1R RRAM array. Parallel entropy extraction enables high‐throughput bit generation without dedicated circuits. This approach achieves NIST‐compliant randomness and low per‐bit energy, offering a scalable hardware
Ankit Bende   +4 more
wiley   +1 more source

Emerging Memory and Device Technologies for Hardware‐Accelerated Model Training and Inference

open access: yesAdvanced Electronic Materials, EarlyView.
This review investigates the suitability of various emerging memory technologies as compute‐in‐memory hardware for artificial intelligence (AI) applications. Distinct requirements for training‐ and inference‐centric computing are discussed, spanning device physics, materials, and system integration.
Yoonho Cho   +6 more
wiley   +1 more source

Triboelectric Tactile Transducers for Neuromorphic Sensing and Synaptic Emulation: Materials, Architectures, and Interfaces

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
Triboelectric nanogenerators are vital for sustainable energy in future technologies such as wearables, implants, AI, ML, sensors and medical systems. This review highlights improved TENG neuromorphic devices with higher energy output, better stability, reduced power demands, scalable designs and lower costs.
Ruthran Rameshkumar   +2 more
wiley   +1 more source

ADC FOTO

open access: yes, 2019
Traballo fin de grao (UDC.COM). Comunicación audiovisual.
openaire   +1 more source

Toward Capacitive In‐Memory‐Computing: A Device to Systems Level Perspective on the Future of Artificial Intelligence Hardware

open access: yesAdvanced Intelligent Discovery, EarlyView.
Capacitive, charge‐domain compute‐in‐memory (CIM) stores weights as capacitance,eliminating DC sneak paths and IR‐drop, yielding near‐zero standbypower. In this perspective, we present a device to systems level performance analysis of most promising architectures and predict apathway for upscaling capacitive CIM for sustainable edge computing ...
Kapil Bhardwaj   +2 more
wiley   +1 more source

Home - About - Disclaimer - Privacy