Results 151 to 160 of about 1,246,132 (248)

Cell surface interactome analysis identifies TSPAN4 as a negative regulator of PD‐L1 in melanoma

open access: yesMolecular Oncology, EarlyView.
Using cell surface proximity biotinylation, we identified tetraspanin TSPAN4 within the PD‐L1 interactome of melanoma cells. TSPAN4 negatively regulates PD‐L1 expression and lateral mobility by limiting its interaction with CMTM6 and promoting PD‐L1 degradation.
Guus A. Franken   +7 more
wiley   +1 more source

Recurrent cancer‐associated ERBB4 mutations are transforming and confer resistance to targeted therapies

open access: yesMolecular Oncology, EarlyView.
We show that the majority of the 18 analyzed recurrent cancer‐associated ERBB4 mutations are transforming. The most potent mutations are activating, co‐operate with other ERBB receptors, and are sensitive to pan‐ERBB inhibitors. Activating ERBB4 mutations also promote therapy resistance in EGFR‐mutant lung cancer.
Veera K. Ojala   +15 more
wiley   +1 more source

The BAR domain of the Arf GTPase-activating protein ASAP1 directly binds actin filaments. [PDF]

open access: yesJ Biol Chem, 2020
Chen PW   +5 more
europepmc   +1 more source

Peroxidasin enables melanoma immune escape by inhibiting natural killer cell cytotoxicity

open access: yesMolecular Oncology, EarlyView.
Peroxidasin (PXDN) is secreted by melanoma cells and binds the NK cell receptor NKG2D, thereby suppressing NK cell activation and cytotoxicity. PXDN depletion restores NKG2D signaling and enables effective NK cell–mediated melanoma killing. These findings identify PXDN as a previously unrecognized immune evasion factor and a potential target to improve
Hsu‐Min Sung   +17 more
wiley   +1 more source

Opposite Surfaces of the Cdc15 F-BAR Domain Create a Membrane Platform That Coordinates Cytoskeletal and Signaling Components for Cytokinesis. [PDF]

open access: yesCell Rep, 2020
Snider CE   +7 more
europepmc   +1 more source

Redox regulation meets metabolism: targeting PRDX2 to prevent hepatocellular carcinoma

open access: yesMolecular Oncology, EarlyView.
PRDX2 acts as a central redox hub linking metabolic dysfunction‐associated steatohepatitis (MASH) to hepatocellular carcinoma (HCC). In normal hepatocytes, PRDX2 maintains redox balance and metabolic homeostasis under oxidative stress. In contrast, during malignant transformation, PRDX2 promotes oncogenic signaling, stemness, and tumor initiation ...
Naroa Goikoetxea‐Usandizaga   +2 more
wiley   +1 more source

Combining antibody conjugates with cytotoxic and immune‐stimulating payloads maximizes anti‐cancer activity

open access: yesMolecular Oncology, EarlyView.
Methods to improve antibody–drug conjugate (ADC) treatment durability in cancer therapy are needed. We utilized ADCs and immune‐stimulating antibody conjugates (ISACs), which are made from two non‐competitive antibodies, to enhance the entry of toxic payloads into cancer cells and deliver immunostimulatory agents into immune cells.
Tiexin Wang   +3 more
wiley   +1 more source

Tumor mutational burden as a determinant of metastatic dissemination patterns

open access: yesMolecular Oncology, EarlyView.
This study performed a comprehensive analysis of genomic data to elucidate whether metastasis in certain organs share genetic characteristics regardless of cancer type. No robust mutational patterns were identified across different metastatic locations and cancer types.
Eduardo Candeal   +4 more
wiley   +1 more source

TRAIL‐PEG‐Apt‐PLGA nanosystem as an aptamer‐targeted drug delivery system potential for triple‐negative breast cancer therapy using in vivo mouse model

open access: yesMolecular Oncology, EarlyView.
Aptamers are used both therapeutically and as targeting agents in cancer treatment. We developed an aptamer‐targeted PLGA–TRAIL nanosystem that exhibited superior therapeutic efficacy in NOD/SCID breast cancer models. This nanosystem represents a novel biotechnological drug candidate for suppressing resistance development in breast cancer.
Gulen Melike Demirbolat   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy