Results 231 to 240 of about 580,446 (318)

Start, Stop, Rewind, Repeat—Cyclic Exposure of Adipose Stromal Cells‐derived Cartilage Organoids to Chondrogenic and Proliferative Cues to Achieve Scaled‐up and Customizable Bone Formation by Endochondral Ossification

open access: yesAdvanced Healthcare Materials, EarlyView.
This study exploits the plasticity of ASCs‐derived cartilage organoids which generate a perichondrial layer of MSCs when exposed to cyclic chondrogenic/proliferative cues. Using these organoids as building blocks, we develop (i) Phalange Shaped Tissue Engineered Cartilage (Pa‐TECs), recapitulating endochondral ossification suitable for the treatment of
Pablo Pfister   +14 more
wiley   +1 more source

Bioactivity, hemocompatibility, and inflammatory response of calcium incorporated sulfonated polyether ether ketone on mouse-derived bone marrow cells. [PDF]

open access: yesBiosci Rep
Saravanabhavan SS   +6 more
europepmc   +1 more source

3D‐Printed Titanium Implants with Bioactive Peptide‐Polysaccharide Scaffolds for Personalized Bone Reconstruction

open access: yesAdvanced Healthcare Materials, EarlyView.
Porous 3D‐printed titanium implants are made bioactive by integration with a supramolecular peptide‐hyaluronic acid nanofibrillar scaffold, without the addition of exogenous cells or growth factors. Uniform filling of the implant architecture promotes vascularized, spatially homogeneous bone regeneration, significantly enhancing osteogenesis throughout
Noam Rattner   +8 more
wiley   +1 more source

Zinc‐Containing Bioactive Glass Programs Macrophage Polarization through Extracellular Traps Regulation for Enhanced Diabetic Wound Healing

open access: yesAdvanced Healthcare Materials, EarlyView.
Zinc‐containing bioactive glass (ZnBG) promotes diabetic wound healing by regulating macrophage extracellular traps (METs). Specifically, ZnBG reduces oxidative stress and inhibits the PAD4 and NLRP3/caspase‐1/GSDMD signaling pathways, thereby suppressing MET formation.
RuiYang Sun   +11 more
wiley   +1 more source

Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics

open access: yesAdvanced Materials, EarlyView.
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy