Results 131 to 140 of about 1,293,017 (382)

Engineering Assembloids to Mimic Graft‐Host Skeletal Muscle Interaction

open access: yesAdvanced Healthcare Materials, EarlyView.
This study develops a graft‐host skeletal muscle assembloid model combining neuromuscular organoids with tissue‐engineered constructs. Pre‐seeding decellularized muscles with myogenic cells enhances cell migration and axon invasion from the organoid. The model exhibits regenerative capacity following acute damage, advancing the understanding of human ...
Lucia Rossi   +13 more
wiley   +1 more source

MIR194-2HG, a miRNA host gene activated by HNF4A, inhibits gastric cancer by regulating microRNA biogenesis

open access: yesBiology Direct
Background MicroRNA host gene (MIRHG) lncRNA is a particular lncRNA subclass that can perform both typical and atypical lncRNA functions. The biological function of MIRHG lncRNA MIR194-2HG in cancer is poorly understood.
Hong Cao   +4 more
doaj   +1 more source

Recent Applications of Mesoporous Silica Nanoparticles in Gene Therapy

open access: yesAdvanced Healthcare Materials, EarlyView.
The review summarizes the synthesis of mesoporous silica nanoparticles (MSNs) with modifiable surface properties, functionalization strategies, mechanism of therapeutic payload release, and current applications in gene therapy, focusing on their capabilities in the targeted delivery of therapeutic nucleic acids, CRISPR‐Cas systems, and other genetic ...
Tamanna Binte Huq   +4 more
wiley   +1 more source

Morphometric‐Assisted Prediction of Developmental Toxicity Using Stem Cell‐Based Embryo Models in Microwells

open access: yesAdvanced Healthcare Materials, EarlyView.
This proof‐of‐concept study involves high‐throughput teratogenicity screening of compounds using XEn/EpiCs, a 3D stem cell‐based embryo model, within microwells. The term ‘morphotoxicity’ is introduced to complement traditional cytotoxicity assays through automated feature extraction and machine‐learning‐assisted classification of morphologies.
Vinidhra Shankar   +4 more
wiley   +1 more source

Biomimetic Scaffolds Enhance iPSC Astrocyte Progenitor Angiogenic, Immunomodulatory, and Neurotrophic Capacity in a Stiffness and Matrix‐Dependent Manner for Spinal Cord Repair Applications

open access: yesAdvanced Healthcare Materials, EarlyView.
Through tuning biomimetic scaffold stiffness and matrix composition the reparative capacity of astrocyte progenitors is enhanced. Soft, collagen‐IV/fibronectin‐functionalized scaffolds promote progenitor growth while improving angiogenic, immunomodulatory, and neurotrophic capacity in a stiffness and matrix‐dependent manner, demonstrating the impact of
Cian O'Connor   +10 more
wiley   +1 more source

Cardiac Organoid Model Inspired Micro‐Robot Smart Patch to Treat Myocardial Infarction

open access: yesAdvanced Materials, EarlyView.
The heart organoid model exhibits the acidic microenvironment characteristic of myocardial infarction, which emerges as a pivotal force propelling the movement of micro‐robots. These micro‐robots, administered through microneedles, can penetrate deep into the tissue, effectively delivering therapeutic payloads to facilitate heart repair.
Fangfang Wang   +12 more
wiley   +1 more source

From Mechanoelectric Conversion to Tissue Regeneration: Translational Progress in Piezoelectric Materials

open access: yesAdvanced Materials, EarlyView.
This review highlights recent progress in piezoelectric materials for regenerative medicine, emphasizing their ability to convert mechanical stimuli into bioelectric signals that promote tissue repair. Key discussions cover the intrinsic piezoelectric properties of biological tissues, co‐stimulation cellular mechanisms for tissue regeneration, and ...
Xinyu Wang   +3 more
wiley   +1 more source

Embryonic stem cell research

open access: yes, 2011
Embryonic stem cell research has the potential to regenerate malfunctioning tissues and replace harmful cancer cells. Although it holds the potential to alleviate malicious disabilities and diseases, it raises ethical concerns due to the destruction of a
Hassan, Jeniene, Phan, Michael
core  

Home - About - Disclaimer - Privacy