Results 171 to 180 of about 565,140 (354)
The photothermally powered microgel is designed to mechanically train mesenchymal stem cells using spatially patterned exogenous forces in three‐dimensional (3D) workspaces. When microgels are activated selectively via photothermal actuation, locally confined tens of nN forces are exerted on cells, triggering osteogenic differentiation in encapsulated ...
Chen Wang +7 more
wiley +1 more source
The Space Within: How Architected Voids Promote Tissue Formation
This review explores the role of void spaces in tissue engineering scaffolds and examines four key methods for introducing porosity into hydrogels at different scales. It discusses sacrificial templating, microgels, phase separation, and 3D printing, highlighting principles, advantages, and limitations. It also addresses emerging strategies integrating
Anna Puiggalí‐Jou +3 more
wiley +1 more source
Nanostructured Protein Surfaces Inspired by Spider Silk
Harnessing recombinant spider silk technology, bioengineered spidroin variants enable the creation of functionalized nanostructured coatings with tunable affinity for specific targets, supporting a broad range of applications ‐ from antifouling surfaces and targeted drug delivery to advanced cell therapies and precision bio‐patterning via lithography ...
Martin Humenik, Thomas Scheibel
wiley +1 more source
MXene and MBene nanomaterials show significant potential in addressing critical challenges in biomedicine, applied biology, agriculture, and the environment. From a nano‐agricultural perspective, this relatively young field has witnessed emerging advances towards applications for plant‐immunoengineering, biostimulation, and controlled delivery ...
Alireza Rafieerad +3 more
wiley +1 more source
Spatially Programmable Electroadhesive Enables In Situ Site‐Selective Functional Coupling
A light‐activated, in situ spatially programmable bioadhesive (STICH) enables microscale, site‐selective integration of bioelectronic devices with wet tissue. It achieves robust mechanical bonding and low‐impedance electrical coupling, enabling reconfigurable neuromodulation and directional electromechanical sensing in vivo and ex vivo.
Yuting Guo +12 more
wiley +1 more source
Biocompatible Ink Optimization Enables Functional Volumetric Bioprinting With Xolography
Xolography's reliance on weak‐base co‐initiators introduces unique biochemical constraints. By dissecting the effects of extracellular pH, osmolality, and lysosomotropic stress, this study defines the biochemical design space that enables fully biocompatible, cell‐laden volumetric printing. Abstract Xolography is a novel linear volumetric manufacturing
Erik Brauer +17 more
wiley +1 more source
Dynamic proteome profiling of differentiating human embryonic stem cells towards cardiomyocytes. [PDF]
Meyfour A +8 more
europepmc +1 more source

