Results 241 to 250 of about 66,212 (346)

Platelet Rubicon Bidirectional Regulation of GPVI and Integrin αIIbβ3 Signaling Mitigates Stroke Infarction Without Compromising Hemostasis

open access: yesAdvanced Science, EarlyView.
This study identifies Rubicon as a key platelet protein that bidirectionally regulates GPVI and integrin αIIbβ3 signaling. Platelet Rubicon protects against cerebral ischemia‐reperfusion injury by limiting infarction without increasing hemorrhage.
Xiaoyan Chen   +11 more
wiley   +1 more source

Dietary intake of specific phenolic compounds and their effect on the antioxidant activity of daily food rations

open access: yesOpen Chemistry, 2015
Koch Wojciech   +3 more
doaj   +1 more source

Procyanidin Capsules Combat ALF by Restoring Mitochondrial Homeostasis and Inhibiting Necroptosis via the PGAM5/DRP1/PINK1 Pathway

open access: yesAdvanced Science, EarlyView.
A biomimetic self‐assembly strategy, Procyanidin Capsules (PC‐Ca), has been developed, which has great stability, bioavailability, and liver‐targeting efficacy and modulates the KEAP1‐NRF2 axis to inhibit ROS formation and necroptosis, regulate mitochondrial homeostasis through the PGAM5/DRP1/PINK1 signaling pathway in thioacetamide (TAA)‐induced ALF ...
Qing Shi   +8 more
wiley   +1 more source

Mitochondrial CISD1 Modulates Microglial Metabolic Reprogramming to Drive Stress Susceptibility in Mice

open access: yesAdvanced Science, EarlyView.
CDGSH iron sulfur domain 1 (CISD1) mitigates oxidative stress by promoting NADH oxidation and Coenzyme Q (CoQ) reduction. Under chronic stress, elevated CISD1 expression in microglia enhances NAD⁺ production, thereby increasing GAPDH activity and glycolytic flux, while reducing ATP synthesis by inhibiting proton transfer from mitochondrial complexes I ...
Wanting Dong   +5 more
wiley   +1 more source

Gallium‐Doped MXene Nanozymes Protect Liver Through Multi‐Death Pathway Blockade and Hepatocyte Regeneration

open access: yesAdvanced Science, EarlyView.
This study develops gallium‐doped V2C MXene nanozymes (Ga‐V2C) to treat acetaminophen‐induced liver injury through multi‐death pathway blockade and hepatocyte regeneration. Unlike conventional single‐target therapies like N‐acetylcysteine, Ga‐V2C nanozymes enable oxidative stress suppression, apoptosis, and ferroptosis inhibition, and enhanced ...
Xiaopeng Cai   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy