Results 81 to 90 of about 78,410 (212)
Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy. [PDF]
, 2014 Hyperammonemia is less severe in arginase 1 deficiency compared with other urea cycle defects. Affected patients manifest hyperargininemia and infrequent episodes of hyperammonemia. Patients typically suffer from neurological impairment with cortical and Cantero, G, Cantero-Nieto, G, Cederbaum, SD, Chan, E, Hu, C, Lipshutz, GS, Park, H, Tai, DS, Yudkoff, M +8 morecore +2 more sourcesMolecular and cellular mechanisms underlying gyrate atrophy: Why is the retina primarily affected?
Acta Ophthalmologica, EarlyView.Abstract
Gyrate atrophy of the choroid and retina (GACR; OMIM #258870) is a rare early‐onset autosomal recessive disorder, caused by bi‐allelic pathogenic variants in the gene coding for ornithine aminotransferase (OAT) resulting in hyperornithinaemia.Mark J. N. Buijs, Berith M. Balfoort, Marion M. Brands, Anneloor L. M. A. ten Asbroek, Camiel J. F. Boon, Roselie M. H. Diederen, Corrie Timmer, Margreet A. E. M. Wagenmakers, Hans R. Waterham, Ronald J. A. Wanders, Riekelt H. Houtkooper, Clara D. van Karnebeek, Arthur A. Bergen +12 morewiley +1 more sourceDexamethasone regulates glutamine synthetase expression in rat skeletal muscles [PDF]
The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles.Banner, Carl, Konagaya, Masaaki, Konagaya, Yoko, Max, Stephen R., Thomas, John W., Vitkovic, Ljubisa +5 morecore +1 more sourceEvidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina [PDF]
, 2005 PURPOSE: Kinetic studies of photoreceptor cell death in the retinal degeneration (rd1) mouse model suggest that photoreceptor degeneration could result from cumulative damage.Delyfer, MN, Forster, V, Leveillard, T, Neveux, N, Picaud, S, Sahel, JA +5 morecore Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target [PDF]
, 2018 Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years.Abdel-Aziz, Ahmadzadeh, Al-Zhoughbi, Albina, Alkan, Allard, Allen, Altman, Alves-Filho, Amelio, Araújo, Argilés, Arora, Arts, Aslanian, Astaldi, Attieh, Augsten, Auvinen, Babbar, Baker, Balasubramanian, Baltazar, Bauer, Bello-Fernandez, Beloribi-Djefaflia, Berchner-Pfannschmidt, Berge, Berrone, Birendra, Bloch-Frankenthal, Bock, Bock, Bonuccelli, Boros, Boudreau, Boukalova, Britten, Brooks, Broome, Bueno, Buqué, Burnet, Cadamuro, Cahlin, Cantelmo, Cao, Carito, Carmeliet, Carmeliet, Caro, Carrascosa, Casazza, Caspani, Catane, Cavalcante, Chakravarty, Chakravarty, Chakravarty, Chang, Chang, Chang, Chappell, Chaudhary, Chen, Chen, Chen, Chiarini, Chittezhath, Choi, Choi, Clark, Clem, Clem, Cohen, Colegio, Collins, Commisso, Covarrubias, Covarrubias, Dang, Dang, Das, Dasgupta, Daurkin, DeBerardinis, DeBerardinis, Delgoffe, Delgoffe, Dell’ Antone, Desai, DiNapoli, Dirat, Dobrina, Doherty, Dong, Draoui, Dufour, Eason, Eelen, El Sayed, Elia, Elwood, Eminel, Fallarino, Farabegoli, Farber, Feun, Fields, Figueras, Filipp, Fischer, Flaig, Flint, Floor, Floridi, Folkman, Folkman, Franklin, Gacche, Ganeshan, Garber, García-Caballero, García-Faroldi, García-Faroldi, Gatenby, Gazi, Geiger, Gentric, Gerner, Gershtein, Ghashghaeinia, Gonen, Goveia, Granchi, Grieninger, Grivennikov, Gross, Gunnink, Guo, Guo, Guppy, Guth, Halestrap, Han, Hanahan, Hanahan, Hanai, Harjes, Harjes, Haskell, Hatzivassiliou, Hayakawa, Hessini, Hitosugi, Ho, Ho, Hoff, Holm, Hosono, Huang, Hubler, Hui, Häusler, Hée, Ignatenko, Ioannesyants, Ip, Jiménez-Valerio, Jiménez-Valerio, Jochems, Johansen, Jones, Kabat, Kafkewitz, Kamphorst, Kamphorst, Kamphorst, Kannan, Karpel-Massler, Katt, Kawasaki, Kelly, Kim, Klimp, Ko, Koliaraki, Kouidhi, Koukourakis, Kridel, Krishna, Kroemer, Krützfeldt, Kubatka, Kucharzewska, la Cueva, Labow, Laing, Lampropoulou, Le, Lechowski, Lee, Lee, Leek, Leighton, Leopold, LePage, Lerma Barbaro, Li, Lin, Liu, Liu, Liu, Liu, Liu, Liu, Liu, Lopes-Coelho, Lu, Lucca, Lukey, Lunt, Luo, López-Lázaro, Löb, Ma, Madaan, Maity, Marchiq, Martinez-Outschoorn, Martinez-Outschoorn, Maráz, Mashima, Masri, Matusewicz, McCann, McKee, McLaughlin, Medina, Medina, Merchan, Meyer, Mider, Missiaen, Mitra, Mockler, Moreno-Sánchez, Morrison, Mu, Murray-Stewart, Márquez, Márquez, Nacev, Nancolas, Newsholme, Nieman, Nisoli, Noman, Norrby, Noy, Nurjhan, Nyberg, Ocaña, Ohmura, Oka, Opitz, Orimo, Pallangyo, Palm, Panda, Papandreou, Parra-Bonilla, Parry, Pascual, Pasquier, Patsoukis, Pavlides, Pavlova, Pelicano, Pellerin, Pennisi, Penny, Peters, Pisarsky, Pizer, Polanski, Polet, Pollard, Polyak, Possemato, Potente, Potente, Prager, Prager, Pushkina, Pérez-Escuredo, Quatromoni, Quesada, Quesada, Rabold, Ramjiawan, Rashid, Rattigan, Reihill, Reitzer, Ribatti, Ribatti, Ribeiro, Richard, Rider, Roberts, Rodríguez-González, Rodríguez-Prados, Rohle, Romero, Romero-García, Roy, Roy, Ruan, Ruiz-Pérez, Russell, Ryu, Saez, Salimian Rizi, Salimian Rizi, Samal, Samudio, Santos, Sanuphan, Sasaki, Saulnier Sholler, Scherz-Shouval, Schoors, Schulze, Segura, Sekar, Selak, Seltzer, Serafini, Shapot, Shapot, Shapot, Sharkia, Shime, Shin, Shurbaji, Sieber, Siu, Skelton, Song, Sonveaux, Sonveaux, Souba, Sousa, Spahr, Spinelli, Spolarics, Stacpoole, Stern, Stuart, Stumvoll, Su, Sukumar, Sánchez-López, Tachibana, Takigawa, Talekar, Tanese, Tang, Tannahill, Tebbe, Thomas, Thomas, Thornburg, Tisdale, Torosian, Torres, Trudeau, Ullah, Uray, Urdiales, Vander Heiden, Vander Heiden, Varricchi, Vasudevan, Velaei, Vera, Vornovitskaya, Végran, Wagner, Wakil, Wang, Wang, Wang, Wang, Warburg, Warburg, Wen, Whitaker-Menezes, Williams-Ashman, Wilson, Wood, Woodward, Woster, Wu, Wu, Xie, Yamanishi, Yang, Yang, Yau, Yen, Yoshida, Yoshizaki, Yu, Yuan, Yuan, Yuan, Yun, Zabala-Letona, Zahalka, Zhan, Zhang, Zhang, Zhang, Zhang, Zhang, Zhao, Zheng, Zhou, Zhu, Ziegler +431 morecore +2 more sourcesDiatom triacylglycerol metabolism: from carbon fixation to lipid droplet degradation
Biological Reviews, EarlyView.ABSTRACT
Diatoms are a prominent microalgae family that has attracted interest for its production of molecules of biotechnological interest. Their fatty acid profile is rich in health‐beneficial omega‐3 eicosapentaenoic acid (EPA). Furthermore, under nutrient‐deprived conditions, many diatom species, notably Phaeodactylum tricornutum, Thalassiosira ...Victor Murison, Josiane Hérault, Justine Marchand, Lionel Ulmann +3 morewiley +1 more sourceTargeting Regulation of Macrophage to Treat Metabolic Disease: Role of Phytochemicals
Cell Proliferation, EarlyView.One‐third of the world's population is affected by metabolic syndrome. Complicated pathogenesis and limited drugs cause the growing prevalence of metabolic syndrome. Macrophage‐mediated metaflammation is closely associated with the development of metabolic syndrome. The role of phytochemicals targeting macrophages in the treatment of metabolic syndrome Zeting Ye, Yanlin Li, Xiaolin Yang, Chenglin Li, Rui Yu, Guangjuan Zheng, Zuqing Su +6 morewiley +1 more sourceGlutaminase‐1 Mediated Glutaminolysis to Glutathione Synthesis Maintains Redox Homeostasis and Modulates Ferroptosis Sensitivity in Cancer Cells
Cell Proliferation, EarlyView.GLS1‐mediated glutaminolysis supports GSH synthesis in cancer cells. GLS1 KO increases ROS, downregulates GPX4, and upregulates GPX1, making cells more sensitive to ferroptosis. Combining GLS1 or GPX1 inhibitors with a GPX4 inhibitor synergistically suppresses cancer growth.Changsen Bai, Jialei Hua, Donghua Meng, Yue Xu, Benfu Zhong, Miao Liu, Zhaosong Wang, Wei Zhou, Liming Liu, Hailong Wang, Yang Liu, Lifang Li, Xiuju Chen, Yueguo Li +13 morewiley +1 more source