Results 91 to 100 of about 508,182 (337)

TBK1 Induces the Formation of Optineurin Filaments That Condensate with Polyubiquitin and LC3 for Cargo Sequestration

open access: yesAdvanced Science, EarlyView.
Phosphorylation of Optineurin by TBK1 induces the formation of filaments that condensate upon binding to linear polyubiquitin. Membrane‐anchored LC3 partitions into these condensates, suggesting that phase separation of filamentous Optineurin with ubiquitylated cargo promotes the sequestration of cargo and its subsequent alignment with LC3‐positive ...
Maria G. Herrera   +10 more
wiley   +1 more source

Inhibition of Cellular Methyltransferases Promotes Endothelial Cell Activation by Suppressing Glutathione Peroxidase 1 Protein Expression [PDF]

open access: hybrid, 2014
Madalena Barroso   +13 more
openalex   +1 more source

Nuclear Factor I‐B Delays Liver Fibrosis by Inhibiting Chemokine Ligand 5 Transcription

open access: yesAdvanced Science, EarlyView.
This study identifies the transcription factor Nuclear Factor I‐B (NFIB) as a key suppressor of liver fibrosis. NFIB expression declines during hepatic stellate cell activation, and its overexpression reduces fibrosis in mice models. The mechanism involves NFIB directly repressing chemokine C─C motif ligand 5 (CCL5), thereby alleviating oxidative ...
Qianqian Chen   +14 more
wiley   +1 more source

Glutathione Peroxidase-like Activities of Oxygen-Containing Diselenides

open access: yesMolecules, 1998
Various diselenides 1 – 8 have been examined with respect to their glutathione peroxidase-like activities (GPx-activities) as an index of their antioxidant properties.
Thomas Wirth
doaj   +1 more source

Inhibition of SLC11A1‐Mediated Lysosomal Iron Accumulation in Microglia Promotes Repair Following White Matter Stroke

open access: yesAdvanced Science, EarlyView.
Genetic and pharmacological inhibition of SLC11A1 functioning as an H+/Fe2+ antiporter–mediated lysosomal iron accumulation in microglia promotes lysosomal lumen acidification, increases CTSD expression, enhances lysosomal myelin debris uptake and degradation, and promotes repair following white matter stroke. ABSTRACT White matter stroke (WMS) results
Lingling Qiu   +11 more
wiley   +1 more source

Beyond Catalytic Therapy: Copper‐Paeonol Nanozymes Disrupt Fascin‐Mediated Actin Bundling to Suppress Tumor Growth and Metastasis

open access: yesAdvanced Science, EarlyView.
Copper‐paeonol nanozymes target tumor‐specific reactive oxygen species generation and disrupt fascin‐mediated actin bundling, effectively suppressing tumor growth and metastatic colonization. Abstract Fascin, an actin‐bundling protein universally upregulated in metastatic tumors, drives tumor migration and invasion by promoting filopodia and ...
Peiying Zhang   +8 more
wiley   +1 more source

Metabolic Reprogramming of T Cells by Dual UCP2 and IL‐17 Blockade Enhances Immunity Against Pancreatic Cancer

open access: yesAdvanced Science, EarlyView.
This study demonstrates that dual UCP2/IL‐17 blockade reprograms T‐cell metabolism to overcome PDAC immunosuppression. Genipin‐mediated UCP2 inhibition enhances CD8⁺ T‐cell IFN‐γ via IL‐12R/STAT4/mTOR signaling and mitochondrial OXPHOS. Combined IL‐17 depletion amplifies Tc1/Th1 responses, reduces MDSCs, and prolongs survival in PDAC models ...
Chuan‐Teng Liu   +11 more
wiley   +1 more source

WDR5‐H3K4me3 Epigenetic Axis Promotes TRMT6‐Dependent tRNA M1A Modification to Facilitate Triple‐Negative Breast Cancer Progression by Suppressing Ferroptosis

open access: yesAdvanced Science, EarlyView.
Upregulated TRMT6 forms aberrant hypermethylation of a specific tRNA pool and serves as a predictor of poor prognosis in TNBC. This m1A modification in tRNAs enhances translation of FTH1 and FTL, reducing the pool of bioavailable Fe2⁺. Reduced Fe2+ availability impairs RSL3‐induced lipid peroxidation and tumor progression.
Yuqing Lei   +12 more
wiley   +1 more source

ERM Inhibition Confers Ferroptosis Resistance through ROS‐Induced NRF2 Signaling

open access: yesAdvanced Science, EarlyView.
ERM inhibition disrupts ERM‐actin interactions, elevating ROS and triggering KEAP1 degradation, which stabilizes and activates NRF2. Nuclear NRF2 induces cytoprotective genes, notably HMOX1, enhancing redox buffering and suppressing lipid peroxidation to resist erastin‐induced ferroptosis.
Menghao Qiao   +19 more
wiley   +1 more source

Home - About - Disclaimer - Privacy