Results 51 to 60 of about 226,351 (284)

Tumor‐stromal crosstalk and macrophage enrichment are associated with chemotherapy response in bladder cancer

open access: yesFEBS Open Bio, EarlyView.
Chemoresistance in bladder cancer: Macrophage recruitment associated with CXCL1, CXCL5 and CXCL8 expression is characteristic of Gemcitabine/Cisplatin (Gem/Cis) Non‐Responder tumors (right side) while Responder tumors did not show substantial tumor‐stromal crosstalk (left side). All biological icons are attributed to Bioicons: carcinoma, cancerous‐cell‐
Sophie Leypold   +11 more
wiley   +1 more source

Microglial dynamics and ferroptosis induction in human iPSC‐derived neuron–astrocyte–microglia tri‐cultures

open access: yesFEBS Open Bio, EarlyView.
A tri‐culture of iPSC‐derived neurons, astrocytes, and microglia treated with ferroptosis inducers as an Induced ferroptosis model was characterized by scRNA‐seq, cell survival, and cytokine release assays. This analysis revealed diverse microglial transcriptomic changes, indicating that the system captures key aspects of the complex cellular ...
Hongmei Lisa Li   +6 more
wiley   +1 more source

The Aging Blood: Cellular Origins, Circulating Drivers, and Therapeutic Potential

open access: yesAging and Cancer, EarlyView.
As a conduit linking all organs, the blood system both reflects and actively drives systemic aging. This review highlights how circulating pro‐aging and antiaging factors and age‐associated hematopoietic stem cell dysfunction contribute to immunosenescence and multi‐organ decline, positioning the hematopoietic system as a target for aging intervention.
Hanqing He, Jianwei Wang
wiley   +1 more source

Reduced Muscular Carnosine in Proximal Myotonic Myopathy—A Pilot 1H‐MRS Study

open access: yesAnnals of Clinical and Translational Neurology, EarlyView.
ABSTRACT Objective Myotonic dystrophy type 2 (proximal myotonic myopathy, PROMM) is a progressive multisystem disorder with muscular symptoms (proximal weakness, pain, myotonia) and systemic manifestations such as diabetes mellitus, cataracts, and cardiac arrhythmias.
Alexander Gussew   +11 more
wiley   +1 more source

Bistability in glycolysis pathway as a physiological switch in energy metabolism.

open access: yesPLoS ONE, 2014
The flux of glycolysis is tightly controlled by feed-back and feed-forward allosteric regulations to maintain the body's glucose homeostasis and to respond to cell's growth and energetic needs.
Bhanu Chandra Mulukutla   +3 more
doaj   +1 more source

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Research Progress of Warburg Effect in Hepatocellular Carcinoma

open access: yesFrontiers in Bioscience-Landmark
The Warburg effect, also called aerobic glycolysis, refers to tumor cells that metabolize glucose through glycolysis even in the presence of oxygen. This rapid breakdown of glucose fuels the fast development, growth, and migration of tumor cells. Lactate,
Yanguang Yang   +8 more
doaj   +1 more source

Bimetallic Nanoreactor Activates cGAS‐STING Pathway via mtDNA Release for Cancer Metalloimmunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
A bimetallic Mn–Ca nanoreactor (MCC) is developed as a non‐nucleotide STING nanoagonist for cancer metalloimmunotherapy. MCC induces Ca2+ overload and hydroxyl radical generation, resulting in mitochondrial damage and mtDNA release. The released mtDNA cooperates with Mn2+ to robustly activate cGAS–STING signaling.
Xin Wang Mo   +7 more
wiley   +1 more source

Germanane Quantum Dots Promote Metabolic Reprogramming of Immune Cells Toward Regulatory T Cells and Suppress Inflammation In Vitro and In Vivo

open access: yesAdvanced Functional Materials, EarlyView.
Metabolic changes in immune cells direct the phenotype and function of the host immune system. Smart nanomaterials must target metabolic pathways to direct immune cell fate. This study reports the fabrication and first application of germanane quantum dots (GeHQDs) to modulate inflammation in vitro and in vivo.
Abhay Srivastava   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy