Results 161 to 170 of about 189,363 (327)

miR‐135a‐5p Is a Promising Target to Prevent the Glomerulosclerosis Associated with Podocyte Developmental Toxicity in Offspring Induced by Prenatal Dexamethasone Exposure

open access: yesAdvanced Science, EarlyView.
Prenatal dexamethasone exposure (PDE) programs persistent podocyte developmental injury and adult glomerulosclerosis. Mechanistically, glucocorticoid receptor (GR) binds the miR‐135a‐5p promoter and recruits the histone acetyltransferase p300, increasing promoter histone acetylation and sustaining miR‐135a‐5p expression. Elevated miR‐135a‐5p suppresses
Xiaoqi Zhao   +8 more
wiley   +1 more source

Cell‐Free DNA‐Based Theranostics for Inflammatory Disorders

open access: yesAdvanced Science, EarlyView.
Summary on the dual potential of cfDNA as biomarkers and therapeutic targets for inflammatory disorders. Figure was created with BioRender.com. ABSTRACT Inflammatory disorders are characterized by immune‐mediated inflammatory cascades that can affect multiple organs.
Jiatong Li   +7 more
wiley   +1 more source

And histone acetylation and transcription in African apes and humans

open access: green, 2011
Beatrice Bodega   +11 more
openalex   +1 more source

T Cell Exhaustion in Cancer Immunotherapy: Heterogeneity, Mechanisms, and Therapeutic Opportunities

open access: yesAdvanced Science, EarlyView.
T cell exhaustion limits immunotherapy efficacy. This article delineates its progression from stem‐like to terminally exhausted states, governed by persistent antigen, transcription factors, epigenetics, and metabolism. It maps the exhaustion landscape in the TME and proposes integrated reversal strategies, providing a translational roadmap to overcome
Yang Yu   +7 more
wiley   +1 more source

Engineering Immune Cell to Counteract Aging and Aging‐Associated Diseases

open access: yesAdvanced Science, EarlyView.
This review highlights a paradigm shift in which advanced immune cell therapies, initially developed for cancer, are now being harnessed to combat aging. By engineering immune cells to selectively clear senescent cells and remodel pro‐inflammatory tissue microenvironments, these strategies offer a novel and powerful approach to delay age‐related ...
Jianhua Guo   +5 more
wiley   +1 more source

KMT2C Loss Promotes NF2‐Wildtype Meningioma Progression and Ferroptosis Sensitivity via Epigenetic Repression of Hippo Signaling

open access: yesAdvanced Science, EarlyView.
In NF2–wild‐type meningiomas, loss of the epigenetic regulator KMT2C suppresses NF2 transcription and inactivates Hippo signaling, driving tumor progression and increasing ferroptosis sensitivity. Restoration of histone acetylation reverses these effects and inhibits tumor growth, identifying KMT2C as a key regulator linking epigenetic control, NF2 ...
Liuchao Zhang   +13 more
wiley   +1 more source

Lactylation Reprogramming in the Bone Infection Microenvironment Identifies PGK1 K361 as a Potential Therapeutic Target for Osteogenic Dysfunction

open access: yesAdvanced Science, EarlyView.
Staphylococcus aureus (S. aureus) infection creates a high‐lactate microenvironment, promoting p300‐mediated lactylation of PGK1 at lysine 361 (K361). Lactylated PGK1 translocates to the mitochondrial outer membrane and interacts with VDAC3. This interaction triggers FtMt downregulation, iron accumulation, and excessive PINK1/Parkin‐mediated mitophagy,
Han‐jun Qin   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy