Results 101 to 110 of about 115,934 (290)
RegGAIN is a novel and powerful deep learning framework for inferring gene regulatory networks (GRNs) from single‐cell RNA sequencing data. By integrating self‐supervised contrastive learning with dual‐role gene representations, it consistently outperforms existing methods in both accuracy and robustness.
Qiyuan Guan +9 more
wiley +1 more source
Nanozymes Integrated Biochips Toward Smart Detection System
This review systematically outlines the integration of nanozymes, biochips, and artificial intelligence (AI) for intelligent biosensing. It details how their convergence enhances signal amplification, enables portable detection, and improves data interpretation.
Dongyu Chen +10 more
wiley +1 more source
Interventions for comorbid learning disabilities [PDF]
Daniel R. Espinas, Lynn S. Fuchs
openalex +1 more source
Chronic oral exposure to microplastics may disrupt gut microbiota homeostasis and intestinal barrier integrity, potentially engaging the gut–brain axis and systemic inflammatory responses. These alterations may be associated with impaired blood–brain barrier function, cerebral microvascular dysfunction, and enhanced endothelial inflammation, pro ...
Hongxing Wang +5 more
wiley +1 more source
Issues in the changing services for the psychiatry of learning disabilities [PDF]
Douglas A. Spencer
openalex +1 more source
SAGE is a unified framework for spatial domain identification in spatial transcriptomics that jointly models tissue architecture and gene programs. Topic‐driven gene selection (NMF plus classifier‐based scoring) highlights spatially informative genes, while dual‐view graph embedding fuses local expression and non‐local functional relations.
Yi He +5 more
wiley +1 more source
SUPPORTING RE-LEARNING OF BASIC SKILLS OF PEOPLE WITH DISABILITIES BY WEB-BASED TRAINING
Thorsten Busse, Ileana Hamburg
openalex +1 more source
ABSTRACT This special issue marking the University of Bath's 60th anniversary offers an opportunity to reflect on nearly a decade of research into the evolution of gene regulatory networks (GRNs) from members of the lab and elsewhere. Our goal is to understand how GRNs rewire and how new transcription factor (TF) functions evolve. Using an experimental
Tiffany B. Taylor, Alan M. Rice
wiley +1 more source
PtRhIr/Ru SAN@M nanozymes cross the blood–brain barrier and selectively accumulate in hemorrhagic brain regions. By mimicking multiple enzyme activities, they attenuate oxidative stress, modulate microglial polarization toward an anti‐inflammatory phenotype, inhibit ferroptosis, and promote neuronal repair.
Jiebo Li +17 more
wiley +1 more source

