Effect of gallic acid on Alkaline phosphatase gene expression in vascular smooth muscle cells [PDF]
Background and purpose: Vascular calcification is an important factor in pathogenesis of atherosclerosis. Studies have shown that alkaline phosphatase increases vascular calcification.
Farrokhi, E. +4 more
core
To dissect how mechanical forces influence intestinal physiology, we developed a stretchable 3D colon‐on‐chip that integrates tunable topography, stiffness and peristalsis‐like motion within a physiologically relevant microenvironment. We showed that stretching is a dominant factor governing epithelial behavior, markedly enhancing proliferation and ...
Moencopi Bernheim‐Dennery +10 more
wiley +1 more source
Cytoglobin Expression Is Induced in Vascular Smooth Muscle Cells Through Endothelial Cell-Derived Notch Signaling: Implications of a Protective Role in Blood Vessel Function [PDF]
Communication between endothelial cells and smooth muscle cells is required for normal blood vessel formation and function. My research focuses on understanding the molecular signaling pathways that govern cell-cell communication and maintain vascular ...
Dammeyer, Kristen
core
This work offers unique Ginger‐based 3D‐printable resins that can print customizable high‐resolution complex designs. The customizable printing backbone of Zingerol prints also mimics various human bones' strength. Acquisition of in‐vivo biocompatibility in rat model with no severe inflammatory response, along with in‐vitro antioxidant and ex‐vivo anti‐
Simran Jindal +9 more
wiley +1 more source
NKX2-5 regulates vessel remodeling in scleroderma-associated pulmonary arterial hypertension
NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling ...
Ioannis Papaioannou +10 more
doaj +1 more source
The Space Within: How Architected Voids Promote Tissue Formation
This review explores the role of void spaces in tissue engineering scaffolds and examines four key methods for introducing porosity into hydrogels at different scales. It discusses sacrificial templating, microgels, phase separation, and 3D printing, highlighting principles, advantages, and limitations. It also addresses emerging strategies integrating
Anna Puiggalí‐Jou +3 more
wiley +1 more source
Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang +13 more
wiley +1 more source
4D Bioprinted Self‐Folding Scaffolds Enhance Cartilage Formation in the Engineering of Trachea
A bilayer self‐folding scaffold, triggerable by humidity, is fabricated via 4D bioprinting for trachea engineering. An analytical model is derived to predict its radius of curvature, enabling its scalability. Cartilage progenitor cells seeded on the scaffold perceive scaffold final curvature and react to it, by enhancing the upregulation of pro ...
Irene Chiesa +4 more
wiley +1 more source
MECHANISMS OF DISEASE Acute Oxygen-Sensing Mechanisms [PDF]
JOSEPH PRIESTLEY, ONE OF THE THREE SCIENTISTS CREDITED WITH THE discovery of oxygen, described the death of mice that were deprived of oxygen. However, he was also well aware of the toxicity of too much oxygen, stating, “For as a candle burns much faster
Buckler, Keith J. +3 more
core
Directed Navigation of Magnetotactic Bacteria via Magnetotaxis in a 3D Vasculature‐On‐A‐Chip
A perfusable vascular network is developed to investigate MTB at the single‐microorganism level. MTB is demonstrated to successfully align and navigate along the magnetic field inside the microvessels. Abstract Magnetotactic bacteria (MTB), inherently motile and self‐powered, are promising biorobotic candidates for targeted anti‐cancer drug delivery ...
Brianna Bradley +6 more
wiley +1 more source

