Results 81 to 90 of about 490,082 (308)
3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht+5 more
wiley +1 more source
Prevention of phenotype switching of vascular smooth muscle cells is an important determinant of normal vascular physiology. Hydrogen peroxide (H2O2) promotes osteogenic differentiation of vascular smooth muscle cells through expression of Runt related ...
Kai er Ying+7 more
doaj
Fibronectin matrix polymerization regulates smooth muscle cell phenotype through a Rac1 dependent mechanism. [PDF]
Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular ...
Feng Shi+4 more
doaj +1 more source
Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension coupled problems with distributed sources [PDF]
We present a new method for modeling tissue perfusion on the capillary scale. The microvasculature is represented by a network of one-dimensional vessel segments embedded in the extra-vascular space. Vascular and extra-vascular space exchange fluid over the vessel walls.
arxiv +1 more source
Learning Control Policies for Imitating Human Gaits [PDF]
The work presented in this report introduces a framework aimed towards learning to imitate human gaits. Humans exhibit movements like walking, running, and jumping in the most efficient manner, which served as the source of motivation for this project.
arxiv
Hypoxia, vascular smooth muscles and endothelium
AbstractHypoxia, or the lack of oxygen, has multiple impacts on the vascular system. The major molecular sensors for hypoxia at the cellular level are hypoxia inducible factor and heme oxygenase. Hypoxia also acts on the vasculature directly conveying its damaging effects through disruption of the control of vascular tone, particularly in the coronary ...
Paul M. Vanhoutte+2 more
openaire +3 more sources
Joule‐assisted nanotherapeutic urethral stent harnesses a smart, biodegradable magnesium stent to orchestrate spatiotemporal theragenerative therapy for urethral strictures. Magnetically induced Joule heating enables on‐demand drug release and bacterial ablation, while simultaneously guiding urothelial regeneration.
Yuhyun Na+15 more
wiley +1 more source
Bioresorbable and Wireless Rechargeable Implanted Na‐ion Battery for Temporary Medical Devices
An all‐solid‐state bioresorbable Na‐ion battery is developed, composed entirely of bio‐eliminable materials. In vivo and ex vivo tests confirmed harmless disintegration of this implanted battery. Lifetime of the implanted battery can be precisely controlled by adjusting the dissolvable encapsulation layer's thickness.
Vedi Kuyil Azhagan Muniraj+8 more
wiley +1 more source
By fabricating and covalently assembling gelatin methacryloyl (GelMA) porous microgels, a new class of granular hydrogel scaffolds with hierarchical porosity is developed. These scaffolds have a significantly higher void fraction than their counterparts made up of nonporous microgels, enhancing cell recruitment and tissue integration. This research may
Alexander Kedzierski+9 more
wiley +1 more source
Surface‐attached multilayer micromagnet systems are fabricated by two‐photon crosslinking. The pillar‐shaped micro actuators consist of a soft and flexible surface‐attached cell‐repellent hydrogel layer at the bottom, acting as a hinge and a cell‐adhesive hydrophobic polymer filled with magnetic nanoparticles.
Nicolas Geid+5 more
wiley +1 more source