Results 141 to 150 of about 222,196 (348)

Hyperviscous Diabetic Bone Marrow Niche Impairs BMSCs Osteogenesis via TRPV2‐Mediated Cytoskeletal‐Nuclear Mechanotransduction

open access: yesAdvanced Science, EarlyView.
Diabetic bone marrow exhibits pathological ECM hyperviscosity that activates TRPV2‐mediated Ca2⁺ influx, leading to perinuclear F‐actin disassembly, nuclear deformation, and chromatin condensation. This cytoskeletal‐nuclear decoupling suppresses osteogenic differentiation of BMSCs.
Yao Wen   +8 more
wiley   +1 more source

The Enkephalinergic Osteoblast [PDF]

open access: yesJournal of Bone and Mineral Research, 1998
H, Rosen, A, Krichevsky, Z, Bar-Shavit
openaire   +2 more sources

Adrenomedullin Facilitates Calcium Channel Currents in Osteoblasts

open access: bronze, 2012
Masakazu Tazaki   +8 more
openalex   +2 more sources

DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss

open access: yesAdvanced Science, EarlyView.
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim   +11 more
wiley   +1 more source

Activation of cancer-related and mitogen-activated protein kinase signaling pathways in human mature osteoblasts isolated from patients with type 2 diabetes

open access: gold, 2019
Tomoyuki Kuroiwa   +6 more
openalex   +1 more source

RUNX2 Activation in Fibro/Adipogenic Progenitors Promotes Muscle Fibrosis in Muscular Dystrophy

open access: yesAdvanced Science, EarlyView.
This study revealed a novel role of the chemokine‐TGF‐β1‐RUNX2 axis in determining the fate of FAP differentiation and modulating muscle fibrosis in patients and mice with muscular dystrophies. ABSTRACT Clinical evidence indicates concurrent muscle inflammation and fibrosis in muscular dystrophies (MDs); however, the molecular mechanisms underlying ...
Pengkai Wu   +12 more
wiley   +1 more source

Engineering Osteoimmune Responses with Functionalized Orthopedic Implants for Post‐Operative Osteosarcoma Treatment

open access: yesAdvanced Science, EarlyView.
Osteosarcoma is the most common primary bone tumor with limited treatment options and a terrible prognosis. This review provides a comprehensive summary of the recent development of osteoimmunomodulatory implants for post‐operative osteosarcoma treatment, of which the potential utility in evoking durable anti‐osteosarcoma immunity and accelerating bone
Yilong Dong   +6 more
wiley   +1 more source

Lysyl oxidases directly control cell surface abundance of platelet-derived growth factor receptors and signaling in osteoblasts [PDF]

open access: bronze
Wolfgang Jarolimek   +8 more
openalex   +1 more source

Activating the Osteoblastic USP26 Pathway Alleviates Multi‐Organ Fibrosis by Decreasing Insulin Resistance

open access: yesAdvanced Science, EarlyView.
The loss of Ubiquitin Specific Peptidase 26 (USP26) in osteoblasts results in decreased bone formation, as well as multi‐organ fibrosis associated with insulin resistance (IR). Mechanistically, the absence of USP26 reduces glycolysis and lactate accumulation, leading to decreased histone H3 lysine 18 lactylation (H3K18LA) in the promoter region of KH ...
Jiyuan Tang   +9 more
wiley   +1 more source

The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening

open access: green, 2010
Kaushik Chatterjee   +7 more
openalex   +2 more sources

Home - About - Disclaimer - Privacy