Results 61 to 70 of about 148,060 (339)

Pioglitazone plus (−)‐epigallocatechin gallate: a novel approach to enhance osteogenic performance in aged bone marrow mesenchymal stem cells

open access: yesFEBS Open Bio, EarlyView.
Aged human bmMSCs are seeded in the scaffold. Osteoblastic induction can slightly increase cell's bone‐forming activity to produce bone‐like tissues, shown as the sporadic xylenol orange‐stained spots (the lower left image). Notably, pioglitazone plus EGCG co‐treatment dramatically increases cell's bone‐forming activity and bone‐like tissue production (
Ching‐Yun Chen   +6 more
wiley   +1 more source

Improvement of osteogenic differentiation in umbilical cord-derived human mesenchymal stem cells through specific MiRNA inhibition

open access: yesScientific Reports
Umbilical cord-derived human mesenchymal stem cells (UC-hMSCs) are multipotent stem cells with great potential for treating bone diseases. Although they can be easily isolated from umbilical cord tissue, their osteogenic differentiation is less efficient
Ladda Meesuk   +4 more
doaj   +1 more source

Impact of Janus Kinase Inhibition with Tofacitinib on Fundamental Processes of Bone Healing [PDF]

open access: yes, 2020
Both inflammatory diseases like rheumatoid arthritis (RA) and anti-inflammatory treatment of RA with glucocorticoids (GCs) or non-steroidal anti-inflammatory drugs (NSAIDs) negatively influence bone metabolism and fracture healing.
Brinkman, Antonia Clara Katharina   +10 more
core   +1 more source

Development and Preliminary In Vivo Study of 3D‐Printed Bioactive Glass Scaffolds with Trabecular Architecture

open access: yesAdvanced Engineering Materials, EarlyView.
This study reports the fabrication of trabecular bioactive glass scaffolds (composition “1d”: 46.1SiO2‐28.7CaO‐8.8MgO‐6.2P2O5‐5.7CaF2‐4.5Na2O wt%) through vat photopolymerization and the relevant results from mechanical testing and in vivo implantation procedures in rabbit femora, showing great promise for bone tissue engineering applications.
Dilshat Tulyaganov   +8 more
wiley   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Notch signaling and fluid shear stress in regulating osteogenic differentiation

open access: yesFrontiers in Bioengineering and Biotechnology, 2022
Osteoporosis is a common bone and metabolic disease that is characterized by bone density loss and microstructural degeneration. Human bone marrow-derived mesenchymal stem cells (hMSCs) are multipotent progenitor cells with the potential to differentiate
Yuwen Zhao   +9 more
doaj   +1 more source

Genetical stability and osteogenic ability of mesenchimal stem cells on demineralized bone matrices [PDF]

open access: yes, 2015
Journal of Osseointegration Volume 7, Issue 1, 1 March 2015, Pages 2-7 Open Access Genetical stability and osteogenic ability of mesenchimal stem cells on demineralized bone matrices (Article) Pozzuoli, A.a, Gardin, C.b, Aldegheri, R.a, Bressan, E.c,
Aldegheri, R.   +9 more
core   +1 more source

3D Multicellular Scaffold Based Model for Advancing Bone Disorder Research

open access: yesAdvanced Functional Materials, EarlyView.
A scalable 3D multicellular in vitro bone model engineered by integrating osteoblasts, osteoclasts, and endothelial cells on biodegradable scaffolds. The system recapitulates key features of human bone remodeling and disease pathology. As a proof of concept, the model mimics osteogenesis imperfecta, demonstrating its potential as a physiologically ...
Gali Guterman‐Ram   +5 more
wiley   +1 more source

Oncostatin M promotes osteogenic differentiation of tendon-derived stem cells through the JAK2/STAT3 signalling pathway

open access: yesJournal of Orthopaedic Surgery and Research
Purpose Oncostatin M (OSM) is involved in the regulation of osteogenic differentiation and has a major role in the development of heterotopic ossification.
Jun Yang   +4 more
doaj   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy