Results 221 to 230 of about 3,315,390 (285)
Wei et al. report that MPXV infection induces aerobic glycolysis, a process mediated by the viral protein I3 through lysine crotonylation at its K102 residue. The acetyltransferase MYST1 catalyzes the crotonylation of I3 to inhibit the ubiquitin‐mediated degradation of WDR26.
Pengjun Wei +12 more
wiley +1 more source
The VHL‐HIF2α (VHL is Von Hippel‐Lindau) axis in adipocytes differentially regulates hematopoiesis and bone formation through stem cell factor (SCF) and chemerin, respectively. This hypoxia‐responsive pathway in adipocytes establishes a systemic signaling network with HSCs and MSCs to maintain tissue homeostasis, revealing a targetable axis for ...
Qian Li +6 more
wiley +1 more source
Wedelolactone (WED), a natural TLR2 agonist, promotes neutrophil differentiation and enhances bactericidal function, offering a potential therapeutic strategy for neutropenia. Using a multi‐omics approach, this study reveals that WED activates the TLR2/MEK/ERK pathway, upregulating key transcription factors (PU.1, CEBPβ) to drive neutrophil development.
Long Wang +16 more
wiley +1 more source
Seasonal cold adaptation is vital for insect survival, yet the molecular mechanisms linking diapause to mitochondrial resilience remain largely unresolved. We identify ascaroside C9 (asc‐C9) as a key endocrine signal that enhances diapause survival during cold stress by activating the AKHR–PGC1α–UCP4 axis, thereby driving cold‐induced lipolysis and ...
Jiao Zhou +14 more
wiley +1 more source
NAD⁺ homeostasis maintains neuronal integrity through opposing actions of NMNAT2 and SARM1. Loss of NMNAT2 in glutamatergic neurons reprograms cortical metabolism from glucose to lipid catabolism, depletes lipid stores, and triggers inflammation and neurodegeneration.
Zhen‐Xian Niou +9 more
wiley +1 more source
This study identifies microRNA‐10a (miR‐10a) as a key brake on regulatory T cell (Treg) suppressive function and intestinal repair. By targeting Blimp‐1, Uqcrq, and amphiregulin, miR‐10a restrains transcriptional, metabolic, and epithelial programs essential for Treg activity.
Wenjing Yang +9 more
wiley +1 more source
TMEM131 recruits the COPII complex to accelerate TRAIL transportation from endoplasmic reticulum to Golgi apparatus, and promotes soluble TRAIL secretion. TRAIL inhibits mitophagy and induces senescence through DR5 receptor in type II alveolar epithelial cells, ultimately driving radiation‐induced lung injury (RILI) progression.
Linzhi Han +10 more
wiley +1 more source

