Results 171 to 180 of about 980,977 (401)
Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors
Kazutoshi Takahashi +6 more
semanticscholar +1 more source
Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang +13 more
wiley +1 more source
Tailored Xenogeneic‐Free Polymer Surface Promotes Dynamic Migration of Intestinal Stem Cells
This study introduces a PoLymer‐coated Ultra‐stable Surface (PLUS), a nitrogen plasma‐treated poly(ethyleneglycoldimethacrylate), as a stable xenogeneic‐free platform for intestinal stem cell culture. PLUS enhances cell attachment, supports actin‐driven migration, and retains functionality after 3 years of storage. Promoting cytoskeletal reorganization,
Seonghyeon Park +13 more
wiley +1 more source
Hybrid piezoelectric scaffolds offer a promising route for Central Nervous System regeneration by combining structural and electrical cues to support neural stem cell growth. This review highlights their potential to overcome current challenges in neural tissue engineering by exploring porous hybrid materials, their biological interactions, and ...
Heather F. Titterton +2 more
wiley +1 more source
G. Martin
semanticscholar +1 more source
BLOC: Buildable and Linkable Organ on a Chip
We developed a “Buildable and Linkable Organ on a Chip” (BLOC) that can construct diverse microphysiological systems (MPSs). The BLOC is standardized to the same size and has one of the functions of “Culture,” “Control,” or “Analysis.” Users can freely configure various MPSs, including developing perfusion, cytotoxicity analysis, and biochemical ...
Yusuke Kimura +7 more
wiley +1 more source
Hydrogel Confinement Strategies for 3D Cell Culture in Microfluidic Systems
Hydrogel confinement structures are key to organizing 3D cell cultures in microfluidic devices. This review classifies five structural strategies (micropillar, phaseguide, porous membrane, stepped‐height, and support‐free) and examines their trade‐offs alongside fabrication methods.
Soohyun Kim, Min Seok Lee, Sung Kyun Lee
wiley +1 more source
This review explores the integration of microfluidic technology with organoid systems as an innovative platform for studying menopausea complex multi‐organ condition. By enabling precise simulation of inter‐organ communication and hormone responses, microfluidic organoids offer a physiologically relevant model for investigating menopausal syndrome and ...
Qianyi Zhang +4 more
wiley +1 more source

