Results 151 to 160 of about 158,743 (322)

An Enzyme‐Like Catalyzed Nanosheets for Redox Stress Oscillation Therapy Against Bacterial Infections

open access: yesAdvanced Science, EarlyView.
Bacterial biofilms form a physicochemical barrier. Their dense network structure and redox homeostasis confer high resistance to antimicrobial treatments and immune‐mediated killing and clearance. In this study, SnSe nanosheets with enzyme‐like properties and piezoelectric catalysis can oscillate to regulate bacterial redox homeostasis and improve the ...
Min Ge   +9 more
wiley   +1 more source

PDK1 promotes breast cancer progression by enhancing the stability and transcriptional activity of HIF-1α

open access: yesGenes and Diseases
Pyruvate dehydrogenase kinase 1 (PDK1) phosphorylates the pyruvate dehydrogenase complex, which inhibits its activity. Inhibiting pyruvate dehydrogenase complex inhibits the tricarboxylic acid cycle and the reprogramming of tumor cell metabolism to ...
Yu Wei   +11 more
doaj   +1 more source

NADH‐Reductive Stress Induced by Dihydrolipoamide Dehydrogenase Activation Contributes to Cuproptosis

open access: yesAdvanced Science, EarlyView.
This study demonstrates a cuproptosis mechanism involving nicotinamide adenine dinucleotide (NADH)‐reductive stress in neural cells. Copper activates dihydrolipoamide dehydrogenase under mitochondrial pH, accumulating NADH. Copper also induces mitochondrial permeability transition pore opening, facilitating NADH translocation to the cytosol and ...
Si‐Yi Zhang   +3 more
wiley   +1 more source

Structural Insight into Interactions between Dihydrolipoamide Dehydrogenase (E3) and E3 Binding Protein of Human Pyruvate Dehydrogenase Complex [PDF]

open access: bronze, 2006
Chad A. Brautigam   +5 more
openalex   +1 more source

Biogenesis of Organelles and Membrane Proteins. [PDF]

open access: yes, 1988
Harmey, Matthew A.   +3 more
core   +1 more source

Asymmetric Cu─N─Ru Bridgedsite Nanozyme‐Loaded Injectable Thermogel Boosts Cuproptosis‐Like Death for Multidrug‐Resistant Urinary Tract Infections

open access: yesAdvanced Science, EarlyView.
To address multidrug‐resistant urinary tract infections (MDR‐UTIs), we developed Cu‐ZIF8‐Ru nanozyme featuring an asymmetric Cu─N─Ru catalytic site. This unique structure enhances multienzyme‐mimetic activity, eradicating resistant bacteria by inducing a cuproptosis‐like death pathway through intracellular Cu2+ accumulation and energy depletion.
Guanlin Li   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy