Results 51 to 60 of about 1,929,146 (335)

Chromatin reconstruction during mouse terminal erythropoiesis

open access: yesiScience, 2022
Summary: Mammalian terminal erythropoiesis involves chromatin and nuclear condensation followed by enucleation. Late-stage erythroblasts undergo caspase-mediated nuclear opening that is important for nuclear condensation through partial histone release ...
Honghao Bi   +11 more
doaj   +1 more source

The anti‐CRISPR protein AcrIE8.1 inhibits the type I‐E CRISPR‐Cas system by directly binding to the Cascade subunit Cas11

open access: yesFEBS Letters, EarlyView.
In this study, we present the structure of AcrIE8.1, a previously uncharacterized anti‐CRISPR protein that inhibits the type I‐E CRISPR‐Cas system. Through a combination of structural and biochemical analyses, we demonstrate that AcrIE8.1 directly binds to the Cas11 subunit of the Cascade complex to inhibit the CRISPR‐Cas system.
Young Woo Kang, Hyun Ho Park
wiley   +1 more source

Phosphatidylinositol 4‐kinase as a target of pathogens—friend or foe?

open access: yesFEBS Letters, EarlyView.
This graphical summary illustrates the roles of phosphatidylinositol 4‐kinases (PI4Ks). PI4Ks regulate key cellular processes and can be hijacked by pathogens, such as viruses, bacteria and parasites, to support their intracellular replication. Their dual role as essential host enzymes and pathogen cofactors makes them promising drug targets.
Ana C. Mendes   +3 more
wiley   +1 more source

Semi-algebraic geometry of common lines [PDF]

open access: yes, 2014
Cryo-electron microscopy is a technique in structural biology for discovering/determining the 3D structure of small molecules. A key step in this process is detecting common lines of intersection between unknown embedded image planes.
Dynerman, David
core   +2 more sources

Disulfide-constrained Fabs overcome target size limitation for high-resolution single particle cryoEM

open access: yesNature Communications
High-resolution protein structures are essential for understanding biological mechanisms and drug discovery. While cryoEM has revolutionized structure determination of large protein complexes, most disease-related proteins are small (
Jennifer E. Kung   +11 more
doaj   +1 more source

Structural insights into lacto‐N‐biose I recognition by a family 32 carbohydrate‐binding module from Bifidobacterium bifidum

open access: yesFEBS Letters, EarlyView.
Bifidobacterium bifidum establishes symbiosis with infants by metabolizing lacto‐N‐biose I (LNB) from human milk oligosaccharides (HMOs). The extracellular multidomain enzyme LnbB drives this process, releasing LNB via its catalytic glycoside hydrolase family 20 (GH20) lacto‐N‐biosidase domain.
Xinzhe Zhang   +5 more
wiley   +1 more source

The Plasmid Mobilome of the Model Plant-Symbiont Sinorhizobium meliloti: Coming up with New Questions and Answers [PDF]

open access: yes, 2014
Rhizobia are Gram-negative Alpha- andBetaproteobacteria living in the underground that have theability to associate with legumes for the establishment ofnitrogen-fixing symbioses.Sinorhizobium melilotiinparticular—the symbiont ofMedicago,Melilotus ...
Lagares, Antonio   +2 more
core   +2 more sources

The Caenorhabditis elegans DPF‐3 and human DPP4 have tripeptidyl peptidase activity

open access: yesFEBS Letters, EarlyView.
The dipeptidyl peptidase IV (DPPIV) family comprises serine proteases classically defined by their ability to remove dipeptides from the N‐termini of substrates, a feature that gave the family its name. Here, we report the discovery of a previously unrecognized tripeptidyl peptidase activity in DPPIV family members from two different species.
Aditya Trivedi, Rajani Kanth Gudipati
wiley   +1 more source

Structural Biology of Telomerase [PDF]

open access: yesCold Spring Harbor Perspectives in Biology, 2019
Telomerase is a DNA polymerase that extends the 3' ends of chromosomes by processively synthesizing multiple telomeric repeats. It is a unique ribonucleoprotein (RNP) containing a specialized telomerase reverse transcriptase (TERT) and telomerase RNA (TER) with its own template and other elements required with TERT for activity (catalytic core), as ...
Yaqiang Wang, Lukas Sušac, Juli Feigon
openaire   +4 more sources

Molecular bases of circadian magnesium rhythms across eukaryotes

open access: yesFEBS Letters, EarlyView.
Circadian rhythms in intracellular [Mg2+] exist across eukaryotic kingdoms. Central roles for Mg2+ in metabolism suggest that Mg2+ rhythms could regulate daily cellular energy and metabolism. In this Perspective paper, we propose that ancestral prokaryotic transport proteins could be responsible for mediating Mg2+ rhythms and posit a feedback model ...
Helen K. Feord, Gerben van Ooijen
wiley   +1 more source

Home - About - Disclaimer - Privacy