Results 91 to 100 of about 1,564 (279)
Photoswitching Conduction in Framework Materials
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez +4 more
wiley +1 more source
Two‐dimensional electronic states are the foundation of modern semiconductor technology. Here, we report molecular‐beam epitaxy growth of fractional double perovskite, EuTa2O6. Reciprocal space mapping and transmission electron microscopy confirm a layered ordering of A‐site cations.
Tobias Schwaigert +15 more
wiley +1 more source
A comparison of reactivating efficacy of newly developed oximes (K074, K075) and currently available oximes (obidoxime, HI-6) in cyclosarin-and tabun-poisoned rats [PDF]
Jiřı́ Kassa, Daniel Jun, Kamil Kuča
openalex +1 more source
Herein presented supraparticles combine the nanoparticulate photocatalyst graphitic carbon nitride with the enzyme horseradish peroxidase, which is immobilized on silica nanoparticles. In an optimized compatibility range, both catalysts operate effectively within the hybrid supraparticles and catalyze a cascade reaction consisting of the photocatalytic
Bettina Herbig +11 more
wiley +1 more source
Gd‐doped BFO (BGFO) exhibits a ∼2‐order reduction in leakage current owing to its lowest content of oxygen vacancies. This leads to a ∼2.5‐fold increase in remnant polarization. These improvements in BGFO effectively boost charge separation and transportation, resulting in the greatest incident photon‐to‐current efficiency of 12.9 ± 0.73% and a ∼1.5 ...
Ming‐Wei Chu +7 more
wiley +1 more source
Frontispiece: A Rapid and Sensitive Strip‐Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY‐Modified Silica Materials [PDF]
Estela Climent +7 more
openalex +1 more source
Ultralight 3D nanofibrous aerogels embedded with metal‐organic frameworks effectively capture and neutralize toxic gases and organophosphonates. Incorporating mesoporous UiO‐66‐NH2 and HKUST‐1 into PAN/PVP fibers enables high MOF loading while maintaining mechanical strength and structural stability.
Mai O. Abdelmigeed +6 more
wiley +1 more source
The study explores structural and magnetic properties of one of the most recent topological quantum materials (MnBi2Te4). The Mn‐poor structure leads to stacking faults (quintuple layer ‐ QL of Bi2Te3 formation instead of a septuple layer ‐ SL of MnBi2Te4), resulting in a coexistence between weak antiferromagnetism and ferromagnetism.
Wesley F. Inoch +10 more
wiley +1 more source
The highly anisotropic Fermi surface of bismuth results in variations in magnetotransport properties across different crystallographic directions, which can be characterized by studying microcrystals. To avoid the observed surface melting under room temperature Focused Ion Beam (FIB) irradiation, two low‐temperature FIB fabrication methods are proposed
Amaia Sáenz‐Hernández +6 more
wiley +1 more source
Quantifying Spin Defect Density in hBN via Raman and Photoluminescence Analysis
An all‐optical method is presented for quantifying the density of boron vacancy spin defects in hexagonal boron nitride (hBN). By correlating Raman and photoluminescence signals with irradiation fluence, defect‐induced Raman modes are identified and established an relationship linking optical signatures to absolute defect densities. This enables direct
Atanu Patra +8 more
wiley +1 more source

