Results 251 to 260 of about 1,745,943 (314)

Substrate Stress Relaxation Regulates Cell‐Mediated Assembly of Extracellular Matrix

open access: yesAdvanced Functional Materials, EarlyView.
Silicone‐based viscoelastic substrates with tunable stress relaxation reveal how matrix mechanics regulates cellular mechanosensing and cell‐mediated matrix remodelling in the stiff regime. High stress relaxation promotes assembly of fibronectin fibril‐like structures, increased nuclear localization of YAP and formation of β1 integrin‐enriched ...
Jonah L. Voigt   +2 more
wiley   +1 more source

The role of a structured community health worker network in achieving malaria elimination goals in the Dominican Republic: An impact evaluation amid COVID-19 disruptions. [PDF]

open access: yesPLOS Glob Public Health
Michelén Ströfer N   +7 more
europepmc   +1 more source

Mechanically Tunable Bone Scaffolds: In Vivo Hardening of 3D‐Printed Calcium Phosphate/Polycaprolactone Inks

open access: yesAdvanced Functional Materials, EarlyView.
A 3D bone scaffold with osteogenic properties and capable of hardening in vivo is developed. The scaffold is implanted in a ductile state, and a phase transformation of the ceramic induces the stiffening and strengthening of the scaffold in vivo. Abstract Calcium phosphate 3D printing has revolutionized customized bone grafting.
Miguel Mateu‐Sanz   +7 more
wiley   +1 more source

Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge

open access: yesAdvanced Functional Materials, EarlyView.
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu   +11 more
wiley   +1 more source

Understanding Decoherence of the Boron Vacancy Center in Hexagonal Boron Nitride

open access: yesAdvanced Functional Materials, EarlyView.
State‐of‐the‐art computations unravel the intricate decoherence dynamics of the boron vacancy center in hexagonal boron nitride across magnetic fields from 0 to 3 T. Five distinct regimes emerge, dominated by nuclear spin interactions, revealing optimal coherence times of 1–20 µs in the 180–350 mT range for isotopically pure samples.
András Tárkányi, Viktor Ivády
wiley   +1 more source

Home - About - Disclaimer - Privacy