Results 11 to 20 of about 22,860 (171)

Essential lipid autacoids rewire mitochondrial energy efficiency in metabolic dysfunction‐associated fatty liver disease

open access: yesHepatology, EarlyView., 2022
Increased liver content of DHA‐derived small lipid autacoids (i.e resolvin D1 and maresin 1) associates with enhanced mitochondrial oxidative phosphorylation, fatty acid β‐oxidation and bioenergetic metabolic flux. These features provide hepatic protection from steatotic, pro‐inflammatory and fibrogenic insults.
Cristina López‐Vicario   +12 more
wiley   +1 more source

Genetic predisposition to porto‐sinusoidal vascular disorder: A functional genomic‐based, multigenerational family study

open access: yesHepatology, EarlyView., 2022
A deleterious variant of FCHSD1 results in mTOR pathway overactivation and may cause porto‐sinusoidal vascular disorder (PSVD). The pedigree of the family demonstrated an autosomal dominant disease with variable expressivity. Whole‐genome sequencing and Sanger sequencing both validated the existence of the FCHSD1 variant and the heterozygosity of c ...
Jingxuan Shan   +19 more
wiley   +1 more source

RIPK3 dampens mitochondrial bioenergetics and lipid droplet dynamics in metabolic liver disease

open access: yesHepatology, EarlyView., 2022
RIPK3 dampens mitochondrial bioenergetics and lipid droplet dynamics in metabolic liver disease. Abstract Background and Aims Receptor‐interacting protein kinase 3 (RIPK3) mediates NAFLD progression, but its metabolic function is unclear. Here, we aimed to investigate the role of RIPK3 in modulating mitochondria function, coupled with lipid droplet (LD)
Marta B. Afonso   +16 more
wiley   +1 more source

Respiratory complex I‐mediated NAD+ regeneration regulates cancer cell proliferation through the transcriptional and translational control of p21Cip1 expression by SIRT3 and SIRT7

open access: yesMolecular Oncology, EarlyView.
NAD+ regeneration by mitochondrial complex I NADH dehydrogenase is important for cancer cell proliferation. Specifically, NAD+ is necessary for the activities of NAD+‐dependent deacetylases SIRT3 and SIRT7, which suppress the expression of p21Cip1 cyclin‐dependent kinase inhibitor, an antiproliferative molecule, at the translational and transcriptional
Masato Higurashi   +5 more
wiley   +1 more source

TOMM20 as a driver of cancer aggressiveness via oxidative phosphorylation, maintenance of a reduced state, and resistance to apoptosis

open access: yesMolecular Oncology, EarlyView.
TOMM20 increases cancer aggressiveness by maintaining a reduced state with increased NADH and NADPH levels, oxidative phosphorylation (OXPHOS), and apoptosis resistance while reducing reactive oxygen species (ROS) levels. Conversely, CRISPR‐Cas9 knockdown of TOMM20 alters these cancer‐aggressive traits.
Ranakul Islam   +9 more
wiley   +1 more source

Determination of ADP/ATP translocase isoform ratios in malignancy and cellular senescence

open access: yesMolecular Oncology, EarlyView.
The individual functions of three isoforms exchanging ADP and ATP (ADP/ATP translocases; ANTs) on the mitochondrial membrane remain unclear. We developed a method for quantitatively differentiating highly similar human ANT1, ANT2, and ANT3 using parallel reaction monitoring. This method allowed us to assess changes in translocase levels during cellular
Zuzana Liblova   +18 more
wiley   +1 more source

Mitochondrial Transplantation via Magnetically Responsive Artificial Cells Promotes Intracerebral Hemorrhage Recovery by Supporting Microglia Immunological Homeostasis

open access: yesAdvanced Materials, Volume 37, Issue 13, April 2, 2025.
A type of magnetically responsive artificial cells (ACs) has been developed, demonstrating the loading of mitochondria and self‐enclosure processes to ensure the protection of mitochondrial transport via the bloodstream. The treatment with ACs effectively transplanted mitochondria around the lesion, thereby improving neurological recovery by supporting
Mi Zhou   +10 more
wiley   +1 more source

Disintegration of the KITENIN/ErbB4 Functional Complex by the Flavonoid Hispidulin Suppresses Colorectal Cancer Progression

open access: yesAdvanced Therapeutics, EarlyView.
Hispidulin disrupts the KITENIN/ErbB4 oncogenic complex and inhibits KITENIN‐mediated AP‐1 activity, cell invasion, and aerobic glycolysis. It also suppresses the production of cancer‐associated metabolites and downregulates transcriptional regulators downstream of the KITENIN complex.
Mücahit Varlı   +7 more
wiley   +1 more source

Intracellular Formation of Synthetic Peptide Nanostructures Causes Mitochondrial Disruption and Cell Death in Tumor Spheroids

open access: yesAdvanced Science, EarlyView.
Synthetic peptide nanostructures, formed within cancer cells in response to glutathione, lead to mitochondrial dysfunction and cell death. The nanostructures significantly damage mitochondrial networks, impair cellular respiration, and induce cell death in both 2D cultures and 3D tumor spheroids.
Sarah Chagri   +13 more
wiley   +1 more source

Meisoindigo Acts as a Molecular Glue to Target PKMYT1 for Degradation in Chronic Myeloid Leukemia Therapy

open access: yesAdvanced Science, EarlyView.
Meisoindigo targets PKMYT1 for degradation by acting as a molecular glue that enhances PKMYT1‐TRIM25 interaction, leading to K48‐linked ubiquitination and subsequent proteasomal degradation, thereby exerting therapeutic effects in chronic myeloid leukemia.
Zhao‐Xin Zhang   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy