Results 201 to 210 of about 12,127,416 (284)

Regulating Tumor Metabolic Reprogramming with Biomimetic Co‐Delivery of Simvastatin and Kynureninase for Immunotherapy

open access: yesAdvanced Science, EarlyView.
After the intravenous injection of biomimetic and pH/ROS‐responsive PTSK@CRM, the nanoparticles can be accumulated in tumors and release Sim and KYNase to inhibit the tumor growth, regulate the metabolism of cholesterol and Kyn, and reverse the immunosuppressive tumor microenvironment.
Jiaxin Yin   +6 more
wiley   +1 more source

Remimazolam Ameliorates Autistic‐Like Behaviors via Suppression of Ferroptosis in VTA Dopaminergic Neurons in a Mouse Model of ASD

open access: yesAdvanced Science, EarlyView.
The ultra‐short‐acting sedative remimazolam has a sustained therapeutic effect on the core symptoms of VPA‐exposed mice. Remimazolam, a GABA agonist, exerts its therapeutic effects by protecting dopamine neurons in the VTA of VPA‐exposed mice. Meanwhile, ferroptosis is the critical mechanism by which remimazolam protects VTA dopaminergic neurons and ...
Yuxin Zhang   +7 more
wiley   +1 more source

A Patient‐Derived Organ‐on‐Chip Platform for Modeling the Tumor Microenvironment and Drug Responses in Pancreatic Cancer

open access: yesAdvanced Science, EarlyView.
Researchers have developed a patient‐derived organ‐on‐a‐chip model for pancreatic cancer by integrating cancer cells with supportive stromal and immune cells inside a microfluidic device. This system mimics the tumor microenvironment, enabling personalized testing of chemotherapy and immunotherapy, and offering new insights into how targeting ...
Darbaz Adnan   +11 more
wiley   +1 more source

Gallium‐Doped MXene Nanozymes Protect Liver Through Multi‐Death Pathway Blockade and Hepatocyte Regeneration

open access: yesAdvanced Science, EarlyView.
This study develops gallium‐doped V2C MXene nanozymes (Ga‐V2C) to treat acetaminophen‐induced liver injury through multi‐death pathway blockade and hepatocyte regeneration. Unlike conventional single‐target therapies like N‐acetylcysteine, Ga‐V2C nanozymes enable oxidative stress suppression, apoptosis, and ferroptosis inhibition, and enhanced ...
Xiaopeng Cai   +13 more
wiley   +1 more source

Noncanonical Roles of Caspase-4 and Caspase-5 in Heme-Driven IL-1β Release and Cell Death. [PDF]

open access: yesJ Immunol, 2021
Bolívar BE   +8 more
europepmc   +1 more source

DEL‐1 is an Endogenous Senolytic Protein that Inhibits Senescence‐Associated Bone Loss

open access: yesAdvanced Science, EarlyView.
Senescent bone marrow stromal cells accumulate in the aging bone microenvironment, promoting bone degeneration. DEL‐1, an endogenous secreted protein, acts as a natural senolytic that selectively eliminates these cells. By engaging a β3 integrin/CD73/adenosine/p38 MAPK/BCL‐2 pathway, DEL‐1 counters aging‐related bone loss, revealing promising ...
Jong‐Hyung Lim   +11 more
wiley   +1 more source

Immune Predictors of Radiotherapy Outcomes in Cervical Cancer

open access: yesAdvanced Science, EarlyView.
This study reveals dynamic immune remodeling in cervical cancer following radiotherapy. Single‐cell analysis identifies the C3/C3AR1 axis as a central mediator of epithelial–myeloid crosstalk, whose inhibition reduces treatment efficacy in mice. Guided by these insights, the eight‐feature machine‐learning model: Cervical Cancer Radiotherapy Immune ...
Linghao Wang   +8 more
wiley   +1 more source

Author Correction: Gasdermin-D pores induce an inactivating caspase-4 cleavage that limits IL-18 production in the intestinal epithelium. [PDF]

open access: yesCommun Biol
Bruce JK   +12 more
europepmc   +1 more source

Wedelolactone, a Novel TLR2 Agonist, Promotes Neutrophil Differentiation and Ameliorates Neutropenia: A Multi‐Omics Approach to Unravel the Mechanism

open access: yesAdvanced Science, EarlyView.
Wedelolactone (WED), a natural TLR2 agonist, promotes neutrophil differentiation and enhances bactericidal function, offering a potential therapeutic strategy for neutropenia. Using a multi‐omics approach, this study reveals that WED activates the TLR2/MEK/ERK pathway, upregulating key transcription factors (PU.1, CEBPβ) to drive neutrophil development.
Long Wang   +16 more
wiley   +1 more source

Home - About - Disclaimer - Privacy