Results 161 to 170 of about 597,477 (331)
PREdicting LNP In Vivo Efficacy (PRELIVE) framework enables the prediction of lipid nanoparticle (LNPs) organ‐specific delivery through dual modeling approaches. Composition‐based models using formulation parameters and protein corona‐based models using biological fingerprints both achieve high predictive accuracy across multiple organs.
Belal I. Hanafy +3 more
wiley +1 more source
Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling
Silvia Rossi Paccani +6 more
openalex +2 more sources
Patient‐specific induced pluripotent stem cells (iPSCs) can be differentiated into alveolar type II cells (iAT2s), expanded as 3D alveolospheres, and grown at physiologically relevant air–liquid interface (ALI). This study shows for the first time the infectability of iAT2s by the influenza A virus (IAV) and proves their responsiveness to the well ...
Lena Gauthier +7 more
wiley +1 more source
Membrane fusion‐inspired nanomaterials offer transformative potential in diagnostics by mimicking natural fusion processes to achieve highly sensitive and specific detection of disease biomarkers. This review highlights recent advancements in nanomaterial functionalization strategies, signal amplification systems, and stimuli‐responsive fusion designs,
Sojeong Lee +9 more
wiley +1 more source
Serum Levels of Th2 Chemokines as the Imporant Markers of Severity in Infantile Atopic Dermatitis [PDF]
Noriaki Shinomiya +4 more
openalex +1 more source
The repair and regeneration of brain tissue faces both biological and technical challenges. Injectable bioscaffolds offer new opportunities to stimulate tissue regrowth in the brain by recruiting neural stem cells. Here, the translational issues are reviewed that need to be address to advance this promising new therapeutic approach from the bench to ...
Michel Modo, Alena Kisel
wiley +1 more source
Sexual Dimorphism in Eosinophilic Esophagitis: Roles of Differential Chemokine and Profibrogenic Expression [PDF]
Quan M. Nhu +6 more
openalex +1 more source
This work presents a novel, dynamically perfused, configurable microfluidic system for epidermis‐only (E and full‐thickness skin (FT SoC) growth, emulating human skin structure and barrier function. Upon TiO2 nanoparticle exposure, the system reveals compromised barrier integrity, reduced metabolic activity, increased permeability, and chemokine‐driven
Samantha Costa +7 more
wiley +1 more source
Chemokines and glycosaminoglycans
Amanda E.I. Proudfoot
doaj +1 more source

