Results 211 to 220 of about 42,190 (304)
Retrograde Signaling for Climbing Fiber Synapse Elimination
Neurons form exuberant synapses with target cells early in development. Then, necessary synapses are selectively strengthened whereas unnecessary connections are weakened and eventually eliminated during postnatal development. This process is known as synapse elimination and is a crucial step for shaping immature neural circuits into functionally ...
openaire
Hybrid Nanofibers for Multimodal Accelerated Wound Healing
Fabrication of wound healing scaffolds based on biocompatible nanofibers. Nanofibers offering high surface area, flexibility, and biocompatibility significantly improved the healing outcome in vivo. Histological, immunological, and anti‐inflammatory markers are noticeably better in treated wounds.
Viraj P. Nirwan +15 more
wiley +1 more source
HUCMSC‐Apo‐mvs enhance peripheral nerve repair by modulating the inflammatory microenvironment (IME), primarily through coordinated actions on three functional cells. They recruit macrophages and promote their polarization from pro‐inflammatory M1 to anti‐inflammatory M2 phenotypes, increasing secretion of IL‐10 and VEGF.
Haolin Liu +21 more
wiley +1 more source
Due to its multifunctionality, replicating the fibrillar and supramolecular architecture of Collagen I is gaining increasing priority in regenerative medicine. Using rotational Melt Electrofibrillation, we present a powerful method to accurately mimic the ultrastructure of Collagen with polycaprolactone, enabling the one‐step fabrication of three ...
Zan Lamberger +11 more
wiley +1 more source
Novel photo‐clickable triazine‐trione thermosets can be shaped and cured under mild conditions, including room and physiological temperatures. These materials are biocompatible and support osteogenic differentiation of bone marrow–derived mesenchymal stem cells on their surface.
Åshild Johansen +7 more
wiley +1 more source
This work introduces photo‐crosslinkable tyraminated poly(vinyl alcohol)‐gelatin (PVA‐GT) hydrogels as tunable injectable platforms for tissue engineering and growth factor delivery applications. This schematic illustrates the two developed hydrogel formulations and the experimental workflow used to evaluate their physico‐chemical properties in vitro ...
Alessia Longoni +15 more
wiley +1 more source
Mechanisms of Spontaneous Climbing Fiber Discharge-Evoked Pauses and Output Modulation of Cerebellar Purkinje Cell in Mice. [PDF]
Jin XH +6 more
europepmc +1 more source
Our study showed that human primary gingival fibroblast–derived microvesicles on nano‐engineered titanium implants promote early osseointegration and soft‐tissue attachment in vivo. ABSTRACT Titanium dental implants require both reliable osseointegration and peri‐implant soft tissue seal formation to ensure long‐term success. While osseointegration has
Pingping Han +10 more
wiley +1 more source
Ti6Al4V‐Bioglass‐Copper Composites for Load‐Bearing Implants
We have designed and manufactured a novel Ti64‐based composite by adding 45S5 bioglass (BG) and copper (Cu). Adding BG on titanium improves wear resistance and biocompatibility, whereas Cu addition improves mechanical strength while providing inherent lifelong bacterial resistance.
Lochan Upadhayay +3 more
wiley +1 more source
Percutaneous prosthetic venous valves are fabricated by embedding stents in an electrospun matrix that extends luminally to form leaflets. The design shields leaflets from hyperplastic cells, isolates struts from blood contact, and avoids discrete anchoring points.
Dario Arcuti +6 more
wiley +1 more source

