Results 171 to 180 of about 471,706 (342)

Carbon Nanotube 3D Integrated Circuits: From Design to Applications

open access: yesAdvanced Functional Materials, EarlyView.
As Moore's law approaches its physical limits, carbon nanotube (CNT) 3D integrated circuits (ICs) emerge as a promising alternative due to the miniaturization, high mobility, and low power consumption. CNT 3D ICs in optoelectronics, memory, and monolithic ICs are reviewed while addressing challenges in fabrication, design, and integration.
Han‐Yang Liu   +3 more
wiley   +1 more source

Structured, Shaped, or Printed Single‐Atom Catalysts and Their Applications

open access: yesAdvanced Functional Materials, EarlyView.
This paper reviews the design and use of structured single‐atom catalysts, which integrate porous architectures with the exceptional reactivity of isolated catalytic sites. It explores fabrication strategies, advanced characterization methods, and support materials that enhance thermal stability, mechanical robustness, and operational efficiency of ...
Jiachengjun Luo   +4 more
wiley   +1 more source

Solution‐Processable and Ambient‐Stable Highly Conductive p‐Type Polymers Derived from Dihydropyrazine and Ethylenedioxythiophene

open access: yesAdvanced Functional Materials, EarlyView.
This work presents π–conjugated polymers based on dihydropyrazine (DHP) and ethylenedioxythiophene (EDOT), developed to produce highly conductive, flexible films for printed electronics. By optimizing the DHP and EDOT ratio, strong and compact π–π stacking is achieved, resulting in polymer films with conductivities up to 1700 S cm−1 under ambient ...
Sung Jae Jeon   +3 more
wiley   +1 more source

Method, liposome collection, and kit for determining complement activity [PDF]

open access: yes
The present invention relates to a method of determining complement activity, wherein said method comprises determining classical complement pathway activity, determining alternative complement pathway activity, and/or determining lectin complement ...
Baumner, Antje   +3 more
core  

Optimizing Angiopep‐2 Density on Polymeric Nanoparticles for Enhanced Blood–Brain Barrier Penetration and Glioblastoma Targeting: Insights From In Vitro and In Vivo Experiments

open access: yesAdvanced Functional Materials, EarlyView.
The Angiopep‐2 peptide density on polymeric nanoparticles significantly impacts blood–brain barrier (BBB) penetration. This study explores this nuanced relationship using various in vitro models and in vivo assays, revealing that dynamic models better predict BBB penetration.
Weisen Zhang   +9 more
wiley   +1 more source

Human complement factor B: functional properties of a recombinant zymogen of the alternative activation pathway convertase [PDF]

open access: yes, 1993
Abbal   +37 more
core   +1 more source

Understanding and Optimizing Li Substitution in P2‐Type Sodium Layered Oxides for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous 
Mingfeng Xu   +5 more
wiley   +1 more source

Strategies to Design and Optimize Artificial Antigen‐Presenting Cells for T Cell Expansion in Cancer Immunotherapy

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights recent advances in engineering artificial antigen‐presenting cells (aAPCs) as alternatives to dendritic cells for T cell expansion. Key design principles inspired by the immunological synapse are discussed, with emphasis on strategies for polyclonal and antigen‐specific T cell expansion.
Nguyen Thi Nguyen, Yu Seok Youn
wiley   +1 more source

Quantum Emitters in Hexagonal Boron Nitride: Principles, Engineering and Applications

open access: yesAdvanced Functional Materials, EarlyView.
Quantum emitters in hexagonal boron nitride have emerged as a promising candidate for quantum information science. This review examines the fundamentals of these quantum emitters, including their level structures, defect engineering, and their possible chemical structures.
Thi Ngoc Anh Mai   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy