Results 101 to 110 of about 326,951 (318)

Alkali Ion‐Incorporated HfO2 Dielectrics for Reconfigurable Neuromorphic Computing

open access: yesAdvanced Functional Materials, EarlyView.
This work presents an indium gallium zinc oxide (IGZO) transistor with an alkali cation‐integrated hafnium dioxide (HfO2) dielectric exhibiting synaptic behavior via ion retention. The solution‐based film fabrication strategy overcomes the limitations of atomic layer deposition (ALD) and precursor coating, enabling the control of synaptic retention ...
Seung Yeon Ki   +7 more
wiley   +1 more source

Safety profile and practical considerations of monoclonal antibody treatment

open access: yesNeurología (English Edition), 2013
Introduction: Monoclonal antibodies (mAb) are immunoglobulins specially designed to act against specific targets, in such a way that their administration stops a specific pathogenic process, stimulates a particular cellular action, or changes a cell ...
B. Casanova Estruch
doaj   +1 more source

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Characterization of recombinant wild-type and nontoxigenic protein A from Staphylococcus pseudintermedius

open access: yesVirulence, 2018
Background: Staphylococcus pseudintermedius is an opportunistic pathogen that is the major cause of pyoderma affecting dogs. Conventional antimicrobial treatment for infections caused by this organism have failed in recent years due to widespread ...
Mohamed A. Abouelkhair   +2 more
doaj   +1 more source

Atomic‐Level Dual‐Cation Engineering Enables High‐Performance Na4VMn(PO4)3 Cathodes for Sodium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun   +8 more
wiley   +1 more source

Chiral Nanohoops as an Efficient Spin Polarization System

open access: yesAdvanced Functional Materials, EarlyView.
Chiral conjugated nanohoops with a central dibenzopentalene unit exhibit 90% spin polarization at low voltage and high conductivity. These properties make them ideal components in molecular spintronics applications. Abstract A central challenge in molecular spintronics is to achieve a high spin polarization at low operating voltages and ambient ...
Anu Gupta   +4 more
wiley   +1 more source

Immunoglobulin kappa light chain variable region gene complex organization and immunoglobulin genes encoding anti-DNA autoantibodies in lupus mice. [PDF]

open access: bronze, 1988
Reinhard Kofler   +7 more
openalex   +1 more source

Enhancing Synaptic Plasticity and Multistate Retention of Organic Neuromorphic Devices Using Anion‐Excessive Gel Electrolyte

open access: yesAdvanced Functional Materials, EarlyView.
Anion‐excessive gel‐based organic synaptic transistors (AEG‐OSTs) that can maintain electrical neutrality are developed to enhance synaptic plasticity and multistate retention. Key improvement is attributed to the maintenance of electrical neutrality in the electrolyte even after electrochemical doping, which reduces the Coulombic force acting on ...
Yousang Won   +3 more
wiley   +1 more source

DNA Sequence of Immunoglobulin Heavy Chain Variable Region Gene in Thyroid Lymphoma [PDF]

open access: hybrid, 2001
Hideaki Miwa   +5 more
openalex   +1 more source

Home - About - Disclaimer - Privacy