Results 181 to 190 of about 418,496 (299)

Low Serum Insulinlike Growth Factor II Levels Correlate with High BMI in American Indian Adults. [PDF]

open access: yesObesity (Silver Spring), 2020
Muller YL   +8 more
europepmc   +1 more source

PD‐1 Inhibits CD4+ TRM‐Mediated cDC1 Mobilization via Suppressing JAML in Human NSCLC

open access: yesAdvanced Science, EarlyView.
CD4+ tissue‐resident memory T cells (TRMs) in non‐small cell lung cancer recruit conventional type 1 dendritic cells via XCL1‐XCR1 signaling, orchestrating antitumor immunity. The costimulatory molecule JAML is essential for this process. PD‐1 blockade restores JAML expression and cDC1 mobilization, while JAML agonists synergize with anti‐PD‐1 therapy,
Zheyu Shao   +16 more
wiley   +1 more source

Bladder urothelial carcinoma producing insulin-like growth factor II: A case report. [PDF]

open access: yesIJU Case Rep, 2018
Funada S   +12 more
europepmc   +1 more source

Increased amounts of a high molecular weight insulin-like growth factor II (IGF-II) peptide and IGF-II messenger ribonucleic acid in pancreatic islets of diabetic Goto-Kakizaki rats. [PDF]

open access: bronze, 1996
Anders Höög   +11 more
openalex   +1 more source

Dysfunctional TRIM31 of POMC Neurons Provokes Hypothalamic Injury and Peripheral Metabolic Disorder under Long‐Term Fine Particulate Matter Exposure

open access: yesAdvanced Science, EarlyView.
Particulate matter ≤2.5 µm (PM2.5) elevates risks of neurological and chronic metabolic diseases, but the underlying mechanisms linking PM2.5‐induced central nervous system (CNS) injury to metabolic dysfunction remain unclear. Hypothalamic pro‐opiomelanocortin‐expressing (POMC+) neurons regulate systemic metabolic homeostasis, and tripartite motif ...
Chenxu Ge   +21 more
wiley   +1 more source

New molecular mechanisms to explain the neuroprotective effects of insulin-like growth factor II in a cellular model of Parkinson's disease. [PDF]

open access: yesJ Adv Res
Romero-Zerbo SY   +10 more
europepmc   +1 more source

Metformin Impairs Breast Cancer Growth through the Inhibition of PRMT6

open access: yesAdvanced Science, EarlyView.
Metformin has a biological activity against breast cancer. However, it is largely unknown about its precise therapeutic targets. Here, histone arginine methyltransferase PRMT6 is identified as a new anti‐cancer target for metformin. Metformin directly binds PRMT6 and inhibits its ability to catalyze histone H3R2 asymmetric dimethylation (H3R2me2a ...
Yinsheng Wu   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy