Results 31 to 40 of about 11,801 (261)

Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening [PDF]

open access: yes, 2012
To expand the available set of Baeyer–Villiger monooxygenases (BVMOs), we have created expression constructs for producing 22 Type I BVMOs that are present in the genome of Rhodococcus jostii RHA1.
A Alfieri   +38 more
core   +4 more sources

Dysfunctional TRIM31 of POMC Neurons Provokes Hypothalamic Injury and Peripheral Metabolic Disorder under Long‐Term Fine Particulate Matter Exposure

open access: yesAdvanced Science, EarlyView.
Particulate matter ≤2.5 µm (PM2.5) elevates risks of neurological and chronic metabolic diseases, but the underlying mechanisms linking PM2.5‐induced central nervous system (CNS) injury to metabolic dysfunction remain unclear. Hypothalamic pro‐opiomelanocortin‐expressing (POMC+) neurons regulate systemic metabolic homeostasis, and tripartite motif ...
Chenxu Ge   +21 more
wiley   +1 more source

Clinical phenotype and genetic mutation of fatty acid hydroxylase - associated neurodegeneration: analysis of four cases

open access: yesChinese Journal of Contemporary Neurology and Neurosurgery, 2017
Objective To report 4 cases of fatty acid hydroxylase - associated neurodegeneration (FAHN) and to summarize the clinical and genetic characteristics of FAHN by literatures review.
Xiao-jun HUANG   +6 more
doaj  

Gallium‐Doped MXene Nanozymes Protect Liver Through Multi‐Death Pathway Blockade and Hepatocyte Regeneration

open access: yesAdvanced Science, EarlyView.
This study develops gallium‐doped V2C MXene nanozymes (Ga‐V2C) to treat acetaminophen‐induced liver injury through multi‐death pathway blockade and hepatocyte regeneration. Unlike conventional single‐target therapies like N‐acetylcysteine, Ga‐V2C nanozymes enable oxidative stress suppression, apoptosis, and ferroptosis inhibition, and enhanced ...
Xiaopeng Cai   +13 more
wiley   +1 more source

Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleTJE. [PDF]

open access: yes, 2017
The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels ...
Amaya   +38 more
core   +1 more source

Balanced Expression of the Diiron Oxygenase BioE Is Essential for Biotin Homeostasis in Elizabethkingia meningoseptica

open access: yesAdvanced Science, EarlyView.
BioE is a new diiron oxygenase that catalyzes the conversion of long‐chain acyl groups into pimeloyl thioester, initiating biotin synthesis. The overexpression of EmBioE disrupts lipid metabolic homeostasis, requiring repressor BioL to maintain a balance between long‐chain fatty acids and biotin synthesis.
Meng Zhang   +9 more
wiley   +1 more source

Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions [PDF]

open access: yes, 2008
Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives).
Beekwilder, M.J.   +10 more
core   +2 more sources

Pirin Transcriptionally Regulates PLA2G4A To Inhibit Ferroptosis in Colorectal Cancer via Lipid Profile Remodeling

open access: yesAdvanced Science, EarlyView.
This study identifies Pirin (PIR), an iron‐binding protein, as a critical ferroptosis suppressor in colorectal cancer through lipid membrane remodeling. PIR, induced by NRF2 during ferroptotic stress, transcriptionally regulates PLA2G4A to shift cellular lipid composition away from ferroptosis‐permissive polyunsaturated phospholipids.
Wei Shi   +10 more
wiley   +1 more source

CRISPLD2 Attenuates Intervertebral Disc Degeneration by Suppressing Oxidative Stress‐Induced Ferroptosis through the miR‐548I‐IL17A Axis

open access: yesAdvanced Science, EarlyView.
This study identifies CRISPLD2 as a key protector against IVDD. By regulating ferroptosis through the CRISPLD2–miR‐548I–IL17A axis, CRISPLD2 maintains NPCs homeostasis and reduces oxidative stress. Restoring CRISPLD2 expression effectively alleviates disc degeneration and highlights a promising therapeutic strategy for discogenic low back pain ...
Yangyang Shi   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy