Results 81 to 90 of about 39,389 (304)

RIG‐I Mediated Neuron‐Specific IFN Type 1 Signaling in FUS‐ALS Induces Neurodegeneration and Offers New Biomarker‐Driven Individualized Treatment Options for (FUS‐)ALS

open access: yesAdvanced Science, EarlyView.
Using iPSC‐derived motoneurons and postmortem tissue from FUS‐ALS patients, it is demonstrated that increased mitochondrial transcription leads to elevated cytosolic double‐stranded RNA (dsRNA) levels. This aberrant accumulation activates a RIG‐I–dependent innate immune response leading to neurodegeneration, which is amenable for FDA‐ and EMA‐approved ...
Marcel Naumann   +26 more
wiley   +1 more source

PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions

open access: yesScientific Reports, 2017
Poly-ADP-ribose-polymerases (PARPs) 1 and 2 are nuclear enzymes that catalyze the poly-ADP-ribosylation of nuclear proteins transferring poly-ADP-ribose (PAR) polymers to specific residues.
G. Catara   +8 more
semanticscholar   +1 more source

PARPi Combining Nanoparticle LIN28B siRNA for the Management of Malignant Ascites

open access: yesAdvanced Science, EarlyView.
This study demonstrates that co‐inhibition of LIN28B and PARP using siLin28b/DSSP@lip‐PEG‐FA nanoparticles in combination with the PARP inhibitor BMN673 effectively suppresses the accumulation of malignant ascites associated with advanced cancers.
Yan Fang   +13 more
wiley   +1 more source

Functions of PARylation in DNA Damage Repair Pathways

open access: yesGenomics, Proteomics & Bioinformatics, 2016
Protein poly ADP-ribosylation (PARylation) is a widespread post-translational modification at DNA lesions, which is catalyzed by poly(ADP-ribose) polymerases (PARPs).
Huiting Wei, Xiaochun Yu
doaj   +1 more source

The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase

open access: yesNature, 2011
Post-translational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis.
D. Slade   +8 more
semanticscholar   +1 more source

XIAP Stabilizes DDRGK1 to Promote ER‐Phagy and Protects Against Noise‐Induced Hearing Loss

open access: yesAdvanced Science, EarlyView.
Mechanism of GAS‐mediated protection against noise‐induced hearing loss (NIHL). Noise exposure activates the ATF4/eIF2α axis, downregulating XIAP and promoting DDRGK1 degradation, thereby inhibiting ER‐phagy and leading to hair cell (HC) death. GAS treatment rescues XIAP and DDRGK1 expression, reactivating ER‐phagy to mitigate HC loss, synaptic damage,
Lin Yan   +13 more
wiley   +1 more source

The Ser/Thr protein kinase FonKin4-poly(ADP-ribose) polymerase FonPARP1 phosphorylation cascade is required for the pathogenicity of watermelon fusarium wilt fungus Fusarium oxysporum f. sp. niveum

open access: yesFrontiers in Microbiology
Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and hydrolyzed by poly(ADP-ribose) glycohydrolase (PARG), is a kind of post-translational protein modification that is involved in various cellular processes in fungi,
Jiajing Wang   +15 more
doaj   +1 more source

Targeting dePARylation for cancer therapy

open access: yesCell & Bioscience, 2020
Poly(ADP-ribosyl)ation (PARylation) mediated by poly ADP-ribose polymerases (PARPs) plays a key role in DNA damage repair. Suppression of PARylation by PARP inhibitors impairs DNA damage repair and induces apoptosis of tumor cells with repair defects ...
Muzaffer Ahmad Kassab   +2 more
doaj   +1 more source

Current status of poly(ADP-ribose) polymerase inhibitors and future directions

open access: yesOncoTargets and Therapy, 2017
Inhibitors of poly(ADP-ribose) polymerases (PARPs), which play a key role in DNA damage/repair pathways, have been developed as antitumor agents based on the concept of synthetic lethality.
A. Ohmoto, S. Yachida
semanticscholar   +1 more source

Homoisoflavanone Delays Colorectal Cancer Progression via DNA Damage‐Induced Mitochondrial Apoptosis and Parthanatos‐Like Cell Death

open access: yesAdvanced Science, EarlyView.
Homoisoflavanone (HIF), a bioactive compound isolated from Polygonatum kingianum, selectively suppresses colorectal cancer progression by inducing DNA damage‐mediated mitochondrial apoptosis and parthanatos‐like cell death. HIF triggers mitochondrial dysfunction, including depolarized membrane potential, elevated ROS, and ATP depletion, while impairing
Hongjie Fan   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy