Results 91 to 100 of about 62,185 (316)
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
New technology may help scale up memory storage capacity [PDF]
Silicon-based memory devices such as hard drives and flash drives are in high demand for gadgets that require storage. Conventional semiconductor material-based memory devices have limited scale-up ability to increase their storage capacity. Hence, there
J, Suryanarayana, Sahu, Dwipak
core
Self‐Immolative Activatable Nanoassembly toward Immuno‐Photodynamic Therapy in TME
A quinone methide‐gated, self‐immolative, H2O2‐responsive nano‐photosensitizer (Pyz/PS) is developed for targeted immuno‐photodynamic therapy. Pyz/PS selectively activates within tumor microenvironments, restores photosensitizer activity, generates ROS, and depletes intracellular GSH, enhancing oxidative stress.
Jing Li +10 more
wiley +1 more source
Resistive switching devices are candidates to be used as weight for the future hardware realization of neuronal networks. Herein, these resistive switches base on oxygen vacancy migration and can be toggled between different resistance states.
Carsten Funck +6 more
doaj +1 more source
Bio‐based and (semi‐)synthetic zwitterion‐modified novel materials and fully synthetic next‐generation alternatives show the importance of material design for different biomedical applications. The zwitterionic character affects the physiochemical behavior of the material and deepens the understanding of chemical interaction mechanisms within the ...
Theresa M. Lutz +3 more
wiley +1 more source
This study investigates electromechanical PUFs that improve on traditional electric PUFs. The electron transport materials are coated randomly through selective ligand exchange. It produces multiple keys and a key with motion dependent on percolation and strain, and approaches almost ideal inter‐ and intra‐hamming distances.
Seungshin Lim +7 more
wiley +1 more source
A Termite‐Inspired Alternative to Cement
A termite‐inspired composite of clay, cellulose, and lignin forms a dense fibrous network with concrete‐like strength (32 MPa) and superior elasticity, processed at ambient temperature. Abstract Clay combined with organic materials is used by termites as a strong and durable construction material for their mounds with minimal environmental impact. Here,
Oren Regev +3 more
wiley +1 more source
Titanium oxide vertical resistive random‐access memory device
Pt/TiO 2 /Pt vertical resistive random‐access memory switching devices were fabricated in a vertical three‐dimensional structure by combining conventional photolithography, electron‐beam evaporation for electrodes and atomic layer deposition for dielectric layers.
David M. Fryauf +4 more
openaire +1 more source
Two‐photon lithography (TPL) enables 3D magnetic nanostructures with unmatched freedom in geometry and material choice. Advances in voxel control, deposition, and functionalization open pathways to artificial spin ices, racetracks, microrobots, and a number of additional technological applications.
Joseph Askey +5 more
wiley +1 more source
Hafnium carbide formation in oxygen deficient hafnium oxide thin films
On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO$_{2-x}$) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC$_x$) at the surface during vacuum annealing at temperatures as low as 600 {\deg}C is ...
Alff, L. +8 more
core +1 more source

