Results 71 to 80 of about 1,705,896 (280)
Phosphatidylinositol 4‐kinase as a target of pathogens—friend or foe?
This graphical summary illustrates the roles of phosphatidylinositol 4‐kinases (PI4Ks). PI4Ks regulate key cellular processes and can be hijacked by pathogens, such as viruses, bacteria and parasites, to support their intracellular replication. Their dual role as essential host enzymes and pathogen cofactors makes them promising drug targets.
Ana C. Mendes +3 more
wiley +1 more source
Hydrostatic compression on polypropylene foam [PDF]
Models currently used to simulate the impact behaviour of polymeric foam at high strain rates use data from mechanical tests. Uniaxial compression is the most common mechanical test used, but the results from this test alone are insufficient to ...
VIOT, Philippe
core +2 more sources
The role and implications of mammalian cellular circadian entrainment
At their most fundamental level, mammalian circadian rhythms occur inside every individual cell. To tell the correct time, cells must align (or ‘entrain’) their circadian rhythm to the external environment. In this review, we highlight how cells entrain to the major circadian cues of light, feeding and temperature, and the implications this has for our
Priya Crosby
wiley +1 more source
Statistical Mechanics of Stress Transmission in Disordered Granular Arrays
We give a statistical-mechanical theory of stress transmission in disordered arrays of rigid grains with perfect friction. Starting from the equations of microscopic force and torque balance we derive the fundamental equations of stress equilibrium.
B. Miller +10 more
core +1 more source
The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate.
Kewei Ren +9 more
doaj +1 more source
Crosstalk between the ribosome quality control‐associated E3 ubiquitin ligases LTN1 and RNF10
Loss of the E3 ligase LTN1, the ubiquitin‐like modifier UFM1, or the deubiquitinating enzyme UFSP2 disrupts endoplasmic reticulum–ribosome quality control (ER‐RQC), a pathway that removes stalled ribosomes and faulty proteins. This disruption may trigger a compensatory response to ER‐RQC defects, including increased expression of the E3 ligase RNF10 ...
Yuxi Huang +8 more
wiley +1 more source
Molecular Mechanism of Mechanical Stress-Induced Cardiac Hypertrophy
Mechanical stress is a major cause of cardiac hypertrophy. Although the mechanisms by which mechanical load induces cardiomyocyte hypertrophy have long been a subject of great interest for cardiologists, the lack of a good in vitro system has hampered the understanding of the biochemical mechanisms.
openaire +3 more sources
This perspective highlights emerging insights into how the circadian transcription factor CLOCK:BMAL1 regulates chromatin architecture, cooperates with other transcription factors, and coordinates enhancer dynamics. We propose an updated framework for how circadian transcription factors operate within dynamic and multifactorial chromatin landscapes ...
Xinyu Y. Nie, Jerome S. Menet
wiley +1 more source
Background Mechanical stress and calcium metabolism are associated with lung development and various pulmonary diseases. Our previous research demonstrated that BDKRB1/Ca2+ signal transduction may be involved in lung dysplasia resulting from scoliosis ...
Ying Zhang +8 more
doaj +1 more source
Disordered but rhythmic—the role of intrinsic protein disorder in eukaryotic circadian timing
Unstructured domains known as intrinsically disordered regions (IDRs) are present in nearly every part of the eukaryotic core circadian oscillator. IDRs enable many diverse inter‐ and intramolecular interactions that support clock function. IDR conformations are highly tunable by post‐translational modifications and environmental conditions, which ...
Emery T. Usher, Jacqueline F. Pelham
wiley +1 more source

