Results 31 to 40 of about 68,105 (246)
The newfound relationship between extrachromosomal DNAs and excised signal circles
Extrachromosomal DNAs (ecDNAs) contribute to the progression of many human cancers. In addition, circular DNA by‐products of V(D)J recombination, excised signal circles (ESCs), have roles in cancer progression but have largely been overlooked. In this Review, we explore the roles of ecDNAs and ESCs in cancer development, and highlight why these ...
Dylan Casey, Zeqian Gao, Joan Boyes
wiley +1 more source
The Role of Telomeres and Telomerase in Human Aging and Aging Associated Diseases
An expanding confirmation for the existence of an imperative association between telomeres and cellular aging. With each cell division ordinary human cells dynamically lose telomeres until many telomeres become uncapped driving the cells to risk ...
Haowa Madi
doaj +2 more sources
PICALM::MLLT10 translocated leukemia
This comprehensive review of PICALM::MLLT10 translocated acute leukemia provides an in‐depth review of the structure and function of CALM, AF10, and the fusion oncoprotein (1). The multifaceted molecular mechanisms of oncogenesis, including nucleocytoplasmic shuttling (2), epigenetic modifications (3), and disruption of endocytosis (4), are then ...
John M. Cullen +7 more
wiley +1 more source
Basroparib inhibits YAP‐driven cancers by stabilizing angiomotin
Basroparib, a selective tankyrase inhibitor, suppresses Wnt signaling and attenuates YAP‐driven oncogenic programs by stabilizing angiomotin. It promotes AMOT–YAP complex formation, enforces cytoplasmic YAP sequestration, inhibits YAP/TEAD transcription, and sensitizes YAP‐active cancers, including KRAS‐mutant colorectal cancer, to MEK inhibition.
Young‐Ju Kwon +4 more
wiley +1 more source
Long telomeres: too much of a good thing
Telomeres, the physical ends of linear eukaryotic chromosomes, protect chromosome ends from end fusions and degradation. Telomere length is tightly regulated to ensure that telomeres are neither too short nor too long.
Chang Michael
doaj +1 more source
Long Telomeres Do Not Affect Cellular Fitness in Yeast
Telomeres, the ends of the eukaryotic chromosomes, help to maintain the genome’s integrity and thus play important roles in aging and cancer. Telomere length is strictly controlled in all organisms.
Yaniv Harari +2 more
doaj +1 more source
Overview of molecular signatures of senescence and associated resources: pros and cons
Cells can enter a stress response state termed cellular senescence that is involved in various diseases and aging. Detecting these cells is challenging due to the lack of universal biomarkers. This review presents the current state of senescence identification, from biomarkers to molecular signatures, compares tools and approaches, and highlights ...
Orestis A. Ntintas +6 more
wiley +1 more source
The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast. [PDF]
Double strand breaks (DSBs) can be repaired via either Non-Homologous End Joining (NHEJ) or Homology directed Repair (HR). Telomeres, which resemble DSBs, are refractory to repair events in order to prevent chromosome end fusions and genomic instability.
Sarah Luke-Glaser, Brian Luke
doaj +1 more source
Diversity and evolution of telomeric motifs and telomere DNA organization in insects [PDF]
Vladimir A. Lukhtanov, Elena Pazhenkova
openalex +1 more source
The role of lipid metabolism in neuronal senescence
Disrupted lipid metabolism, through alterations in lipid species or lipid droplet accumulation, can drive neuronal senescence. However, lipid dyshomeostasis can also occur alongside neuronal senescence, further amplifying tissue damage. Delineating how lipid‐induced senescence emerges in neurons and glial cells, and how it contributes to ageing and ...
Dikaia Tsagkari +2 more
wiley +1 more source

