Results 141 to 150 of about 5,118,873 (324)
Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics
Wnt signaling is one of the important pathways to play a major role in various biological processes, such as embryonic stem-cell development, tissue regeneration, cell differentiation, and immune cell regulation. Recent studies suggest that Wnt signaling
Muhammad Haseeb +3 more
semanticscholar +1 more source
SIRT4 positively regulates autophagy via ULK1, but independently of HDAC6 and OPA1
Cells expressing SIRT4 (H161Y), a catalytically inactive mutant of the sirtuin SIRT4, fail to upregulate LC3B‐II and exhibit a reduced autophagic flux under stress conditions. Interestingly, SIRT4(H161Y) promotes phosphorylation of ULK1 at S638 and S758 that are associated with inhibition of autophagy initiation.
Isabell Lehmkuhl +13 more
wiley +1 more source
A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. [PDF]
Canonical Wnt signaling is an osteo-inductive signal that promotes bone repair through acceleration of osteogenic differentiation by progenitors. Dkk-1 is a secreted inhibitor of canonical Wnt signaling and thus inhibits osteogenesis.
Angela Smolarz +9 more
core +3 more sources
Gastrulation: Wnts Signal Constriction [PDF]
Recent work shows that Wnt signaling directly regulates the apical constriction that drives gastrulation movements in Caenorhabditis elegans, and also promotes invagination in sea urchins, providing a novel and possibly conserved mode of developmental regulation.
openaire +2 more sources
KLK7, a tissue kallikrein‐related peptidase, is elevated in advanced colorectal cancer and associated with shorter survival. High KLK7 levels in ascites correlate with peritoneal metastasis. In mice, KLK7 overexpression increases metastasis. In vitro, KLK7 enhances cancer cell proliferation, migration, adhesion, and spheroid formation, driving ...
Yosr Z. Haffani +6 more
wiley +1 more source
WNT Signaling in Cardiac and Vascular Disease
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue ...
S. Foulquier +5 more
semanticscholar +1 more source
Aged human bmMSCs are seeded in the scaffold. Osteoblastic induction can slightly increase cell's bone‐forming activity to produce bone‐like tissues, shown as the sporadic xylenol orange‐stained spots (the lower left image). Notably, pioglitazone plus EGCG co‐treatment dramatically increases cell's bone‐forming activity and bone‐like tissue production (
Ching‐Yun Chen +6 more
wiley +1 more source
Wnt signaling pathways are tightly controlled under a physiological condition, under which they play key roles in many biological functions, including cell fate specification and tissue regeneration.
Juan Shi +4 more
doaj +1 more source
The Aging Blood: Cellular Origins, Circulating Drivers, and Therapeutic Potential
As a conduit linking all organs, the blood system both reflects and actively drives systemic aging. This review highlights how circulating pro‐aging and antiaging factors and age‐associated hematopoietic stem cell dysfunction contribute to immunosenescence and multi‐organ decline, positioning the hematopoietic system as a target for aging intervention.
Hanqing He, Jianwei Wang
wiley +1 more source
Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options
Aberrant activation of Wnt/β-catenin signaling plays a central role in the pathogenesis of a wide variety of malignancies and is typically caused by mutations in core Wnt pathway components driving constitutive, ligand-independent signaling.
Harmen van Andel +3 more
semanticscholar +1 more source

