The role of A-to-I RNA editing in cancer development [PDF]
Adenosine-to-inosine (A-to-I) RNA editing is the most common type of post-transcriptional nucleotide modification in humans, which is catalyzed in ADAR enzymes. Recent genomic studies have revealed thousands of altered RNA editing events in various cancer tissues, leading to diverse functional consequences.
Xiaoyan Xu, Yumeng Wang, Han Liang
openalex +3 more sources
Advances in Detection Methods for A-to-I RNA Editing. [PDF]
ABSTRACTAdenosine‐to‐inosine (A‐to‐I) RNA editing is a key post‐transcriptional modification that influences gene expression and various cellular processes. Advances in sequencing technologies have greatly contributed to the identification of A‐to‐I editing sites, providing insights into their distribution across coding and non‐coding regions.
Yang Y, Sakurai M.
europepmc +3 more sources
REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments
RNA editing is a relevant epitranscriptome phenomenon able to increase the transcriptome and proteome diversity of eukaryotic organisms. ADAR mediated RNA editing is widespread in humans in which millions of A-to-I changes modify thousands of primary ...
L. Mansi+9 more
semanticscholar +1 more source
Knowledge in the Investigation of A-to-I RNA Editing Signals [PDF]
RNA editing is a post-transcriptional alteration of RNA sequences that is able to affect protein structure as well as RNA and protein expression. Adenosine-to-inosine (A-to-I) RNA editing is the most frequent and common post-transcriptional modification in human, where adenosine (A) deamination produces its conversion into inosine (I), which in turn is
Nigita G+4 more
openaire +4 more sources
Conservation of A-to-I RNA editing in bowhead whale and pig. [PDF]
RNA editing is a post-transcriptional process in which nucleotide changes are introduced into an RNA sequence, many of which can contribute to proteomic sequence variation. The most common type of RNA editing, contributing to nearly 99% of all editing events in RNA, is A-to-I (adenosine-to-inosine) editing mediated by double-stranded RNA-specific ...
Larsen K, Heide-Jørgensen MP.
europepmc +7 more sources
The preponderance of nonsynonymous A-to-I RNA editing in coleoids is nonadaptive [PDF]
AbstractA-to-I editing enzymatically converts the base adenosine (A) in RNA molecules to inosine (I), which is recognized as guanine (G) in translation. Exceptionally abundant A-to-I editing was recently discovered in the neural tissues of coleoids (octopuses, squids, and cuttlefishes), with a greater fraction of nonsynonymous sites than synonymous ...
Daohan Jiang, Jianzhi Zhang
openalex +5 more sources
Detection of A-to-I RNA Editing in SARS-COV-2. [PDF]
ADAR1-mediated deamination of adenosines in long double-stranded RNAs plays an important role in modulating the innate immune response. However, recent investigations based on metatranscriptomic samples of COVID-19 patients and SARS-COV-2-infected Vero cells have recovered contrasting findings. Using RNAseq data from time course experiments of infected
Picardi E, Mansi L, Pesole G.
europepmc +5 more sources
Steric antisense inhibition of AMPA receptor Q/R editing reveals tight coupling to intronic editing sites and splicing [PDF]
Adenosine-to-Inosine (A-to-I) RNA editing is a post-transcriptional mechanism, evolved to diversify the transcriptome in metazoa. In addition to wide-spread editing in non-coding regions protein recoding by RNA editing allows for fine tuning of protein ...
Ales Balik+51 more
core +1 more source
Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome
RNA editing by adenosine deamination generates RNA and protein diversity through the posttranscriptional modification of single nucleotides in RNA sequences.
A. Athanasiadis, A. Rich, S. Maas
semanticscholar +1 more source
DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. [PDF]
Adenosine deaminases that act on RNA (ADARs) carry out adenosine (A) to inosine (I) editing reactions with a known requirement for duplex RNA. Here, we show that ADARs also react with DNA/RNA hybrid duplexes.
Beal, Peter A+2 more
core +1 more source