Results 201 to 210 of about 3,605,716 (385)

FGF2 Mediated USP42‐PPARγ Axis Activation Ameliorates Liver Oxidative Damage and Promotes Regeneration

open access: yesAdvanced Science, EarlyView.
USP42 is identified as a novel DUB of PPARγ in hepatocytes. USP42 mediated PPARγ deubiquitylation determines its transcriptional preference on proliferative and redox balance genes. USP42 knockdown exacerbates liver damage and delays regeneration. FGF2 is the upstream signal that initiates and activates the USP42‐PPARγ axis.
Nanfei Yang   +16 more
wiley   +1 more source

A Multifunctional Nanodelivery System Modified by Fusion Peptides Acts as Teriparatide Carrier for Noise‐Induced Hearing Loss Therapy

open access: yesAdvanced Science, EarlyView.
The fusion peptide LR27‐modified thermosensitive nanodelivery system exhibits both hair cell targeting and inner ear penetrating properties. This system sustainably and effectively delivers PTH1‐34 to the inner ear of a hearing loss mouse model via the synergistic effects of multiple peptides, achieving satisfactory hearing protection through ...
Jiawen Li   +12 more
wiley   +1 more source

Nanotherapy for Neural Retinal Regeneration

open access: yesAdvanced Science, EarlyView.
Nanotechnology enhances ophthalmic treatments by improving drug delivery and regenerating ocular tissues, combating vision loss from retinal diseases through innovative nano‐systems. This review outlines ocular anatomy, pathology, immune microenvironment, and barriers, detailing nanocarrier characteristics, classification, and preparation methods, and ...
Chuyao Yu   +11 more
wiley   +1 more source

Presbycusis: Pathology, Signal Pathways, and Therapeutic Strategy

open access: yesAdvanced Science, EarlyView.
In ARHL, the stria vascularis, acting as a cochlear battery, gradually loses its ability to maintain the endocochlear potential, leading to impaired hair cell function and progressive hearing loss. Single‐cell sequencing reveals age‐related cellular changes in the cochlea, providing insights into the underlying mechanisms of aging and potential ...
Xiaoxu Zhao   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy