Potential therapeutic targeting of BKCa channels in glioblastoma treatment
This review summarizes current insights into the role of BKCa and mitoBKCa channels in glioblastoma biology, their potential classification as oncochannels, and the emerging pharmacological strategies targeting these channels, emphasizing the translational challenges in developing BKCa‐directed therapies for glioblastoma treatment.
Kamila Maliszewska‐Olejniczak +4 more
wiley +1 more source
Bioinspired light-driven chloride pump with helical porphyrin channels
Halorhodopsin, a light-driven chloride pump, utilizes photonic energy to drive chloride ions across biological membranes, regulating the ion balance and conveying biological information.
Chao Li +6 more
doaj +1 more source
Halide binding by the purified halorhodopsin chromoprotein. II. New chloride-binding sites revealed by 35Cl NMR [PDF]
Halorhodopsin is a light-driven chloride pump in the cell membrane of Halobacterium halobium. Recently, a polypeptide of apparent Mr = 20,000 has been purified that contains the halorhodopsin chromophore.
Chan, Sunney I. +5 more
core
Characterization of constitutive and acid-induced outwardly rectifying chloride currents in immortalized mouse distal tubular cells [PDF]
Thiazides block Na+ reabsorption while enhancing Ca2 + reabsorption in the kidney. As previously demonstrated in immortalized mouse DCT (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2 ...
Shrier, Alvin +2 more
core +1 more source
Excess Ca2+ ions activate the Calcium‐Sensing Receptor (CaSR), which subsequently drives the uptake of excess inorganic phosphate (Pi) via the Pi transporter (Pit−1) in chondrocytes. This mechanism causes a toxic increase in intracellular Pi concentration, ultimately leading to chondrocyte apoptosis and pathological mineralization. Excess extracellular
Sachie Nakatani +7 more
wiley +1 more source
Secreted CLCA1 modulates TMEM16A to activate Ca2+-dependent chloride currents in human cells [PDF]
Calcium-activated chloride channel regulator 1 (CLCA1) activates calcium-dependent chloride currents; neither the target, nor mechanism, is known. We demonstrate that secreted CLCA1 activates calcium-dependent chloride currents in HEK293T cells in a ...
Brett, Tom J +3 more
core +2 more sources
TMC4 localizes to multiple taste cell types in the mouse taste papillae
Transmembrane channel‐like 4 (TMC4), a voltage‐dependent chloride channel, plays a critical role in amiloride‐insensitive salty taste transduction. TMC4 is broadly expressed in all mature taste cell types, suggesting a possible involvement of multiple cell types in this pathway.
Momo Murata +6 more
wiley +1 more source
Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons
Chloride regulation is important for setting GABAergic reversal potential, though tools to manipulate chloride levels are limited. Here, the authors combine Archaerhodopsin with a chloride channel opsin to generate an optogenetic chloride extrusion ...
Hannah Alfonsa +3 more
doaj +1 more source
A wood‐based magnetic and conductive material called Magwood (MW), capable of blocking almost 99.99% of electromagnetic waves (in the X‐band frequency range), is synthesized using a simple, solvent‐free process. MW is lightweight, resists water, and is flame‐retardant, making it a promising alternative for shielding electronics. The rapid proliferation
Akash Madhav Gondaliya +3 more
wiley +1 more source
Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle. [PDF]
Electrical membrane properties of skeletal muscle fibers have been thoroughly studied over the last five to six decades. This has shown that muscle fibers from a wide range of species, including fish, amphibians, reptiles, birds, and mammals, are all ...
Chen, Tsung-Yu +4 more
core +1 more source

